Bayesian Experimental Design via Contrastive Diffusions
- URL: http://arxiv.org/abs/2410.11826v1
- Date: Tue, 15 Oct 2024 17:53:07 GMT
- Title: Bayesian Experimental Design via Contrastive Diffusions
- Authors: Jacopo Iollo, Christophe Heinkelé, Pierre Alliez, Florence Forbes,
- Abstract summary: Experimental Design (BOED) is a powerful tool to reduce the cost of running a sequence of experiments.
We introduce an it expected posterior distribution with cost-effective properties and provide a tractable access to the EIG contrast.
By incorporating generative models into the BOED framework, we expand its scope and its use in scenarios that were previously impractical.
- Score: 2.2186678387006435
- License:
- Abstract: Bayesian Optimal Experimental Design (BOED) is a powerful tool to reduce the cost of running a sequence of experiments. When based on the Expected Information Gain (EIG), design optimization corresponds to the maximization of some intractable expected {\it contrast} between prior and posterior distributions. Scaling this maximization to high dimensional and complex settings has been an issue due to BOED inherent computational complexity. In this work, we introduce an {\it expected posterior} distribution with cost-effective sampling properties and provide a tractable access to the EIG contrast maximization via a new EIG gradient expression. Diffusion-based samplers are used to compute the dynamics of the expected posterior and ideas from bi-level optimization are leveraged to derive an efficient joint sampling-optimization loop, without resorting to lower bound approximations of the EIG. The resulting efficiency gain allows to extend BOED to the well-tested generative capabilities of diffusion models. By incorporating generative models into the BOED framework, we expand its scope and its use in scenarios that were previously impractical. Numerical experiments and comparison with state-of-the-art methods show the potential of the approach.
Related papers
- Covariance-Adaptive Sequential Black-box Optimization for Diffusion Targeted Generation [60.41803046775034]
We show how to perform user-preferred targeted generation via diffusion models with only black-box target scores of users.
Experiments on both numerical test problems and target-guided 3D-molecule generation tasks show the superior performance of our method in achieving better target scores.
arXiv Detail & Related papers (2024-06-02T17:26:27Z) - Variational Bayesian Optimal Experimental Design with Normalizing Flows [0.837622912636323]
Variational OED estimates a lower bound of the EIG without likelihood evaluations.
We introduce the use of normalizing flows for representing variational distributions in vOED.
We show that a composition of 4--5 layers is able to achieve lower EIG estimation bias.
arXiv Detail & Related papers (2024-04-08T14:44:21Z) - Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
We focus on diffusion models, a powerful generative AI technology, and investigate their potential for black-box optimization.
We study two practical types of labels: 1) noisy measurements of a real-valued reward function and 2) human preference based on pairwise comparisons.
Our proposed method reformulates the design optimization problem into a conditional sampling problem, which allows us to leverage the power of diffusion models.
arXiv Detail & Related papers (2024-03-20T00:41:12Z) - Scalable method for Bayesian experimental design without integrating
over posterior distribution [0.0]
We address the computational efficiency in solving the A-optimal Bayesian design of experiments problems.
A-optimality is a widely used and easy-to-interpret criterion for Bayesian experimental design.
This study presents a novel likelihood-free approach to the A-optimal experimental design.
arXiv Detail & Related papers (2023-06-30T12:40:43Z) - Variational Sequential Optimal Experimental Design using Reinforcement
Learning [0.0]
We introduce variational sequential Optimal Experimental Design (vsOED), a new method for optimally designing a finite sequence of experiments under a Bayesian framework and with information-gain utilities.
Our vsOED results indicate substantially improved sample efficiency and reduced number of forward model simulations compared to previous sequential design algorithms.
arXiv Detail & Related papers (2023-06-17T21:47:19Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
A popular approach to protein design is to combine a generative model with a discriminative model for conditional sampling.
We propose diffusioN Optimized Sampling (NOS), a guidance method for discrete diffusion models.
NOS makes it possible to perform design directly in sequence space, circumventing significant limitations of structure-based methods.
arXiv Detail & Related papers (2023-05-31T16:31:24Z) - Design Amortization for Bayesian Optimal Experimental Design [70.13948372218849]
We build off of successful variational approaches, which optimize a parameterized variational model with respect to bounds on the expected information gain (EIG)
We present a novel neural architecture that allows experimenters to optimize a single variational model that can estimate the EIG for potentially infinitely many designs.
arXiv Detail & Related papers (2022-10-07T02:12:34Z) - New Paradigms for Exploiting Parallel Experiments in Bayesian
Optimization [0.0]
We present new parallel BO paradigms that exploit the structure of the system to partition the design space.
Specifically, we propose an approach that partitions the design space by following the level sets of the performance function.
Our results show that our approaches significantly reduce the required search time and increase the probability of finding a global (rather than local) solution.
arXiv Detail & Related papers (2022-10-03T16:45:23Z) - Robust Expected Information Gain for Optimal Bayesian Experimental
Design Using Ambiguity Sets [0.0]
We define and analyze emphrobust expected information gain (REIG)
REIG is a modification of the objective in EIG by minimizing an affine relaxation of EIG over an ambiguity set of perturbed distributions.
We show that, when combined with a sampling-based approach to estimating EIG, REIG corresponds to a log-sum-exp' stabilization of the samples used to estimate EIG.
arXiv Detail & Related papers (2022-05-20T01:07:41Z) - Efficient Semi-Implicit Variational Inference [65.07058307271329]
We propose an efficient and scalable semi-implicit extrapolational (SIVI)
Our method maps SIVI's evidence to a rigorous inference of lower gradient values.
arXiv Detail & Related papers (2021-01-15T11:39:09Z) - Optimal Bayesian experimental design for subsurface flow problems [77.34726150561087]
We propose a novel approach for development of chaos expansion (PCE) surrogate model for the design utility function.
This novel technique enables the derivation of a reasonable quality response surface for the targeted objective function with a computational budget comparable to several single-point evaluations.
arXiv Detail & Related papers (2020-08-10T09:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.