論文の概要: Towards using Reinforcement Learning for Scaling and Data Replication in Cloud Systems
- arxiv url: http://arxiv.org/abs/2410.11862v1
- Date: Mon, 07 Oct 2024 11:32:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-20 09:10:56.850314
- Title: Towards using Reinforcement Learning for Scaling and Data Replication in Cloud Systems
- Title(参考訳): クラウドコンピューティングにおけるスケーリングとデータレプリケーションのための強化学習の活用に向けて
- Authors: Riad Mokadem, Fahem Arar, Djamel Eddine Zegour,
- Abstract要約: 強化学習はクラウドコンピューティングに関連する多くの領域で使われており、自動データレプリケーション戦略を得るための有望な分野である。
本研究では、強化学習(RL)に基づくデータ複製戦略とデータスケーリングについて調査する。
- 参考スコア(独自算出の注目度): 0.49157446832511503
- License:
- Abstract: Given its intuitive nature, many Cloud providers opt for threshold-based data replication to enable automatic resource scaling. However, setting thresholds effectively needs human intervention to calibrate thresholds for each metric and requires a deep knowledge of current workload trends, which can be challenging to achieve. Reinforcement learning is used in many areas related to the Cloud Computing, and it is a promising field to get automatic data replication strategies. In this work, we survey data replication strategies and data scaling based on reinforcement learning (RL).
- Abstract(参考訳): 直感的な性質から、多くのクラウドプロバイダは、しきい値ベースのデータレプリケーションを選択して、自動リソーススケーリングを実現している。
しかしながら、しきい値を設定するには、メトリックごとのしきい値のキャリブレーションに人間の介入が効果的に必要であり、現在のワークロードトレンドについて深い知識を必要とするため、達成は困難である。
強化学習はクラウドコンピューティングに関連する多くの領域で使われており、自動データレプリケーション戦略を得るための有望な分野である。
本研究では,強化学習(RL)に基づくデータ複製戦略とデータスケーリングについて検討する。
関連論文リスト
- CUDC: A Curiosity-Driven Unsupervised Data Collection Method with
Adaptive Temporal Distances for Offline Reinforcement Learning [62.58375643251612]
本稿では,Curiosity-driven Unsupervised Data Collection (CUDC)法を提案する。
この適応的な到達性機構により、特徴表現は多様化することができ、エージェントは、好奇心で高品質なデータを集めるために自分自身をナビゲートすることができる。
実験的に、CUDCはDeepMindコントロールスイートの様々なダウンストリームオフラインRLタスクにおいて、既存の教師なし手法よりも効率と学習性能が優れている。
論文 参考訳(メタデータ) (2023-12-19T14:26:23Z) - Iterative self-transfer learning: A general methodology for response
time-history prediction based on small dataset [0.0]
本研究では,小さなデータセットに基づいてニューラルネットワークを学習するための反復的自己伝達学習手法を提案する。
提案手法は,小さなデータセットに対して,ほぼ一桁の精度でモデル性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T18:48:04Z) - Offline Robot Reinforcement Learning with Uncertainty-Guided Human
Expert Sampling [11.751910133386254]
バッチ(オフライン)強化学習の最近の進歩は、利用可能なオフラインデータから学習する上で有望な結果を示している。
本研究では,不確実性推定を用いて人間の実演データを注入する手法を提案する。
実験の結果,本手法は,専門家データと準最適エージェントから収集したデータを組み合わせる方法に比べて,よりサンプル効率が高いことがわかった。
論文 参考訳(メタデータ) (2022-12-16T01:41:59Z) - Outsourcing Training without Uploading Data via Efficient Collaborative
Open-Source Sampling [49.87637449243698]
従来のアウトソーシングでは、デバイスデータをクラウドサーバにアップロードする必要がある。
我々は、公開および異種ソースから収集された膨大なデータセットである、広く利用可能なオープンソースデータを活用することを提案する。
我々は,オープンソースデータからクラウドトレーニングのためのプロキシデータセットを構築するための,ECOS(Efficient Collaborative Open-source Sampling)と呼ばれる新しい戦略を開発した。
論文 参考訳(メタデータ) (2022-10-23T00:12:18Z) - Segmentation-guided Domain Adaptation for Efficient Depth Completion [3.441021278275805]
本稿では,vgg05型CNNアーキテクチャと半教師付きドメイン適応手法に基づく効率的な深度補完モデルを提案する。
空間的コヒーレンスを高めるため,情報ソースとしてセグメンテーションを用いた学習プロセスを導出する。
提案手法は,計算フットプリントを著しく低くしながら,従来手法の効率的かつ低パラメータ状態を改善する。
論文 参考訳(メタデータ) (2022-10-14T13:01:25Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
下位のデータ構造は、しばしば学習タスクのソリューションを改善するために利用される。
データ拡張は、入力データに複数の変換を適用することで、トレーニング中にこれらの対称性を誘導する。
この作業は、学習タスクを解決しながらデータ拡張を自動的に適応することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2022-09-29T18:11:01Z) - Deep invariant networks with differentiable augmentation layers [87.22033101185201]
データ拡張ポリシーの学習方法は、保持データを必要とし、二段階最適化の問題に基づいている。
我々のアプローチは、現代の自動データ拡張技術よりも訓練が簡単で高速であることを示す。
論文 参考訳(メタデータ) (2022-02-04T14:12:31Z) - Adaptive Explainable Continual Learning Framework for Regression
Problems with Focus on Power Forecasts [0.0]
この文脈における潜在的な課題を説明するために、2つの連続的な学習シナリオが提案される。
ディープニューラルネットワークは、新しいタスクを学習し、アプリケーションのデータ量が増加し続けるにつれて、古いタスクから得た知識を忘れないようにしなければならない。
研究トピックは関連しているが、連続的なディープラーニングアルゴリズムの開発、データストリームにおける非定常検出戦略、説明可能で可視化可能な人工知能などに限定されていない。
論文 参考訳(メタデータ) (2021-08-24T14:59:10Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
本稿では、最先端のオープンソースAutoMLツールを調査し、ストリームから収集したデータに適用し、時間とともにパフォーマンスがどのように変化するかを測定する。
この結果から,既製のAutoMLツールで十分な結果が得られることが示されたが,概念ドリフトや検出,適応といった手法が適用されれば,予測精度を時間とともに維持することが可能になる。
論文 参考訳(メタデータ) (2021-06-14T11:42:46Z) - Deep Transfer Learning with Ridge Regression [7.843067454030999]
大量のデータで訓練されたディープモデルは、関連するドメインから見えないデータに対して有望な一般化能力を示す。
我々は、深層ニューラルネットワーク(DNN)から生成された学習特徴ベクトルの低ランク性と、カーネルリッジ回帰(KRR)で提供されるクローズドフォームソリューションを活用することで、この問題に対処する。
本手法は、教師あり半教師ありのトランスファー学習タスクにおいて成功している。
論文 参考訳(メタデータ) (2020-06-11T20:21:35Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。