論文の概要: Are Grid Cells Hexagonal for Performance or by Convenience?
- arxiv url: http://arxiv.org/abs/2410.11886v1
- Date: Fri, 11 Oct 2024 21:45:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:44:58.889270
- Title: Are Grid Cells Hexagonal for Performance or by Convenience?
- Title(参考訳): グリッドセルはパフォーマンスにヘキサゴナルか、それとも快適か?
- Authors: Taahaa Mir, Peipei Yao, Kateri Duranceau, Isabeau Prémont-Schwarz,
- Abstract要約: 空間記憶の保存・検索作業における正方形および六角形格子セルの性能の比較を行った。
その結果、異なるデータセット間での精度とロバスト性、リコールする画像のノイズレベルが比較できることがわかった。
- 参考スコア(独自算出の注目度): 1.789933715503843
- License:
- Abstract: This paper investigates whether the hexagonal structure of grid cells provides any performance benefits or if it merely represents a biologically convenient configuration. Utilizing the Vector-HaSH content addressable memory model as a model of the grid cell -- place cell network of the mammalian brain, we compare the performance of square and hexagonal grid cells in tasks of storing and retrieving spatial memories. Our experiments across different path types, path lengths and grid configurations, reveal that hexagonal grid cells perform similarly to square grid cells with respect to spatial representation and memory recall. Our results show comparable accuracy and robustness across different datasets and noise levels on images to recall. These findings suggest that the brain's use of hexagonal grids may be more a matter of biological convenience and ease of implementation rather than because they provide superior performance over square grid cells (which are easier to implement in silico).
- Abstract(参考訳): 本稿では,グリッドセルの六角形構造が,生物学的に便利な構成であるかどうかを考察する。
哺乳動物の脳の配置細胞ネットワークのモデルとしてVector-HaSH含有メモリモデルを用いて,空間記憶の保存と検索のタスクにおける正方形および六角形グリッドセルの性能を比較した。
異なる経路タイプ, 経路長, グリッド構成の異なる実験により, 六角形格子セルは空間表現やメモリリコールに関して, 正方形格子セルと同じような性能を示すことが明らかとなった。
その結果、異なるデータセット間での精度とロバスト性、リコールする画像のノイズレベルが比較できることがわかった。
これらの結果は、正方形格子細胞(シリコで容易に実装できる)よりも、脳の六角形格子の使用は生物学的有用性や実装の容易性よりも重要であることを示唆している。
関連論文リスト
- Generative modeling of living cells with SO(3)-equivariant implicit
neural representations [2.146287726016005]
ニューラルネットワークによって推定される符号付き距離関数(SDF)のレベルセットとして,生きた細胞形状を表現することを提案する。
我々は、完全に接続されたニューラルネットワークを最適化し、3D+時間領域の任意の時点におけるSDF値の暗黙的な表現を提供する。
本研究では, 急激な変形を示す細胞 (Platynereis dumerilii) , 増殖・分裂する細胞 (C. elegans) , および糸状体突起を成長・分岐する細胞 (A549ヒト肺癌細胞) に対するこのアプローチの有効性を示す。
論文 参考訳(メタデータ) (2023-04-18T12:51:18Z) - Conformal Isometry of Lie Group Representation in Recurrent Network of
Grid Cells [52.425628028229156]
本稿では,リカレントネットワークモデルを用いたグリッドセルの特性について検討する。
グリッドセルの連続的誘引ニューラルネットワークの基盤となる,単純な非線形リカレントモデルに着目する。
論文 参考訳(メタデータ) (2022-10-06T05:26:49Z) - Variable Bitrate Neural Fields [75.24672452527795]
本稿では,特徴格子を圧縮し,メモリ消費を最大100倍に削減する辞書手法を提案する。
辞書の最適化をベクトル量子化オートデコーダ問題として定式化し、直接監督できない空間において、エンドツーエンドの離散神経表現を学習する。
論文 参考訳(メタデータ) (2022-06-15T17:58:34Z) - Graph Neural Network for Cell Tracking in Microscopy Videos [0.0]
顕微鏡ビデオにおける細胞追跡のための新しいグラフニューラルネットワーク(GNN)を提案する。
タイムラプスシーケンス全体を直接グラフとしてモデル化することにより,セルトラジェクトリの集合全体を抽出する。
我々は、異なる生体細胞のインスタンスを区別する細胞特徴ベクトルを抽出するために、ディープメトリック学習アルゴリズムを利用する。
論文 参考訳(メタデータ) (2022-02-09T21:21:48Z) - Grid Cell Path Integration For Movement-Based Visual Object Recognition [0.0]
我々は,任意の入力列が与えられたオブジェクトの信頼性認識を支援するために,格子セルをベースとした皮質ネットワークの経路統合をいかに行うかを示す。
我々のネットワーク(GridCellNet)は、グリッドセル計算を用いて視覚情報を統合し、動きに基づいて予測を行う。
論文 参考訳(メタデータ) (2021-02-17T23:52:57Z) - Stretchable Cells Help DARTS Search Better [70.52254306274092]
分化可能なニューラルアーキテクチャサーチ(DARTS)は、柔軟で多様な細胞タイプを発見することに成功している。
現在のDARTS法は、広くて浅い細胞に傾向があり、このトポロジー崩壊は、準最適細胞を誘導する。
本稿では,細胞に伸縮性を持たせることで,ストレッチ可能な細胞に直接サーチを実装できることを示す。
論文 参考訳(メタデータ) (2020-11-18T14:15:51Z) - Beyond Fixed Grid: Learning Geometric Image Representation with a
Deformable Grid [70.83353059694531]
本稿では,学習可能なニューラルネットワークモジュールであるemphDeformable Grid DefGridを紹介する。
DefGridは、2次元三角格子の頂点の位置オフセットを予測する。
セマンティックセグメンテーションのための一様グリッド上でCNNを使用する場合と比較して,同じグリッド解像度で有意に改善された結果を示す。
論文 参考訳(メタデータ) (2020-08-21T02:22:06Z) - Image segmentation via Cellular Automata [58.86475603234583]
我々は高解像度画像のセグメンテーションを成功させるセルオートマトンを設計し、訓練する。
私たちの最小のオートマトンは、複雑なセグメンテーションタスクを解決するために1万以下のパラメータを使用します。
論文 参考訳(メタデータ) (2020-08-11T19:04:09Z) - On Path Integration of Grid Cells: Group Representation and Isotropic
Scaling [135.0473739504851]
格子セルによる経路積分の一般的な表現モデルの理論的解析を行う。
我々は、歯列脳の格子細胞の同様の性質を共有する六角形格子パターンを学習する。
学習したモデルは、正確な長距離経路積分を行うことができる。
論文 参考訳(メタデータ) (2020-06-18T03:44:35Z) - Grid Cells Are Ubiquitous in Neural Networks [0.0]
格子細胞は空間的および非空間的認知タスクにおいて重要な役割を果たしていると考えられている。
最近の研究では、LSTMの経路積分のための格子細胞の出現が観察されている。
論文 参考訳(メタデータ) (2020-03-07T01:40:56Z) - Segmentation with Residual Attention U-Net and an Edge-Enhancement
Approach Preserves Cell Shape Features [12.676246022612533]
We modified the U-Net architecture to segment cells in fluorescence widefield microscopy images and quantitatively evaluation its performance。
97%の感度, 93%の特異性, 91%のジャカード類似性, 95%のDice係数で, エッジ付き残留注意U-Netは, セグメンテーション性能において最先端のU-Netを上回った。
論文 参考訳(メタデータ) (2020-01-15T20:44:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。