論文の概要: Parametric model reduction of mean-field and stochastic systems via higher-order action matching
- arxiv url: http://arxiv.org/abs/2410.12000v1
- Date: Tue, 15 Oct 2024 19:05:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:43:28.047091
- Title: Parametric model reduction of mean-field and stochastic systems via higher-order action matching
- Title(参考訳): 高次動作マッチングによる平均場・確率系のパラメトリックモデル削減
- Authors: Jules Berman, Tobias Blickhan, Benjamin Peherstorfer,
- Abstract要約: 我々は、勾配と平均場効果を特徴とする物理系の人口動態のモデルを学ぶ。
提案手法は,幅広いパラメータの集団動態を正確に予測し,最先端拡散モデルおよびフローベースモデルより優れていることを示す。
- 参考スコア(独自算出の注目度): 1.1509084774278489
- License:
- Abstract: The aim of this work is to learn models of population dynamics of physical systems that feature stochastic and mean-field effects and that depend on physics parameters. The learned models can act as surrogates of classical numerical models to efficiently predict the system behavior over the physics parameters. Building on the Benamou-Brenier formula from optimal transport and action matching, we use a variational problem to infer parameter- and time-dependent gradient fields that represent approximations of the population dynamics. The inferred gradient fields can then be used to rapidly generate sample trajectories that mimic the dynamics of the physical system on a population level over varying physics parameters. We show that combining Monte Carlo sampling with higher-order quadrature rules is critical for accurately estimating the training objective from sample data and for stabilizing the training process. We demonstrate on Vlasov-Poisson instabilities as well as on high-dimensional particle and chaotic systems that our approach accurately predicts population dynamics over a wide range of parameters and outperforms state-of-the-art diffusion-based and flow-based modeling that simply condition on time and physics parameters.
- Abstract(参考訳): この研究の目的は、確率的および平均場効果を特徴とし、物理パラメータに依存する物理系の人口動態のモデルを学ぶことである。
学習されたモデルは古典的な数値モデルの代理として振る舞うことができ、物理パラメータの上のシステムの振る舞いを効率的に予測することができる。
最適輸送と行動マッチングからベナモ・ブレーニエの公式を構築し,パラメータおよび時間依存性の勾配場を推定するために変分問題を用いる。
推論された勾配場は、様々な物理パラメータの上の集団レベルで物理系の力学を模倣するサンプル軌道を高速に生成することができる。
モンテカルロサンプリングと高次二次規則を組み合わせることは,サンプルデータからトレーニング目標を正確に推定し,トレーニングプロセスの安定化に重要であることを示す。
我々は、Vlasov-Poisson不安定性や高次元粒子・カオスシステムについて、より広いパラメータにわたる人口動態を正確に予測し、時間および物理パラメータを条件とした、最先端拡散に基づくフローベースモデリングよりも優れていることを示す。
関連論文リスト
- Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
パラメータと構造を同時に推定することで,最適化手法に大きな課題が生じることを示す。
モデルの正確な推定を実証するが、擬似的、解釈可能なモデルの推論を強制することは、難易度を劇的に高める。
論文 参考訳(メタデータ) (2024-04-10T14:38:58Z) - Spatio-Temporal Fluid Dynamics Modeling via Physical-Awareness and Parameter Diffusion Guidance [18.861739607401322]
本稿では,時空間流体力学モデリングのための2段階フレームワークST-PADを提案する。
上流では時間特性を持つベクトル再構成モジュールを設計する。
下流では、パラメータを含む拡散確率ネットワークを用いて、流体の高品質な将来状態を生成する。
論文 参考訳(メタデータ) (2024-03-18T14:57:47Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
拡散モデル(DM)は、連続入力のための最先端の生成モデルを表す。
我々はtextbfphase space dynamics に基づく新しい生成モデリングフレームワークを提案する。
我々のフレームワークは、動的伝播の初期段階において、現実的なデータポイントを生成する能力を示す。
論文 参考訳(メタデータ) (2023-10-11T18:38:28Z) - An information field theory approach to Bayesian state and parameter
estimation in dynamical systems [0.0]
本稿では、連続時間決定論的力学系に適した状態とパラメータ推定のためのスケーラブルなベイズ的手法を開発する。
システム応答の関数空間に物理インフォームドされた事前確率測度を構築し、物理を満たす関数がより高い確率で現れるようにする。
論文 参考訳(メタデータ) (2023-06-03T16:36:43Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Neural Superstatistics for Bayesian Estimation of Dynamic Cognitive
Models [2.7391842773173334]
我々は,時間変化パラメータと時間不変パラメータの両方を復元できるベイズ推論のシミュレーションに基づくディープラーニング手法を開発した。
この結果から,ディープラーニングアプローチは時間的ダイナミクスを捉える上で極めて効率的であることが示唆された。
論文 参考訳(メタデータ) (2022-11-23T17:42:53Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
近年、機械学習(ML)モデルはカオス力学系の力学を正確に予測するために訓練可能であることが示されている。
緩和技術がなければ、この技術は人工的に迅速にエラーを発生させ、不正確な予測と/または気候不安定をもたらす可能性がある。
トレーニング中にモデル入力に付加される多数の独立雑音実効化の効果を決定論的に近似する正規化手法であるLinearized Multi-Noise Training (LMNT)を導入する。
論文 参考訳(メタデータ) (2022-11-09T23:40:52Z) - On the Influence of Enforcing Model Identifiability on Learning dynamics
of Gaussian Mixture Models [14.759688428864159]
特異モデルからサブモデルを抽出する手法を提案する。
本手法はトレーニング中のモデルの識別性を強制する。
この手法がディープニューラルネットワークのようなより複雑なモデルにどのように適用できるかを示す。
論文 参考訳(メタデータ) (2022-06-17T07:50:22Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。