論文の概要: Bias Similarity Across Large Language Models
- arxiv url: http://arxiv.org/abs/2410.12010v1
- Date: Tue, 15 Oct 2024 19:21:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:44:51.696186
- Title: Bias Similarity Across Large Language Models
- Title(参考訳): 大規模言語モデルにおけるバイアス類似性
- Authors: Hyejun Jeong, Shiqing Ma, Amir Houmansadr,
- Abstract要約: 機械学習モデルのバイアスは慢性的な問題である。
オープンソースとクローズドな10のLarge Language Modelを包括的に見ていきます。
モデル間のバイアスがどのように現れるかを理解するために、機能的類似度を測定します。
- 参考スコア(独自算出の注目度): 32.0365189539138
- License:
- Abstract: Bias in machine learning models has been a chronic problem, especially as these models influence decision-making in human society. In generative AI, such as Large Language Models, the impact of bias is even more profound compared to the classification models. LLMs produce realistic and human-like content that users may unconsciously trust, which could perpetuate harmful stereotypes to the uncontrolled public. It becomes particularly concerning when utilized in journalism or education. While prior studies have explored and quantified bias in individual AI models, no work has yet compared bias similarity across different LLMs. To fill this gap, we take a comprehensive look at ten open- and closed-source LLMs from four model families, assessing the extent of biases through output distribution. Using two datasets-one containing 4k questions and another with one million questions for each of the four bias dimensions -- we measure functional similarity to understand how biases manifest across models. Our findings reveal that 1) fine-tuning does not significantly alter output distributions, which would limit its ability to mitigate bias, 2) LLMs within the same family tree do not produce similar output distributions, implying that addressing bias in one model could have limited implications for others in the same family, and 3) there is a possible risk of training data information leakage, raising concerns about privacy and data security. Our analysis provides insight into LLM behavior and highlights potential risks in real-world deployment.
- Abstract(参考訳): 機械学習モデルのバイアスは慢性的な問題であり、特にこれらのモデルは人間の社会における意思決定に影響を与える。
大規模言語モデルのような生成的AIでは、バイアスの影響は分類モデルよりもさらに深い。
LLMは、ユーザーが無意識に信頼できる現実的で人間的なコンテンツを生成し、有害なステレオタイプをコントロールされていない人々に永続させる。
特に、ジャーナリズムや教育で使用される際に関係する。
従来の研究では、個々のAIモデルにおいてバイアスを定量化してきたが、異なるLLM間でバイアス類似性を比較した研究はまだない。
このギャップを埋めるために、4つのモデルファミリーから10個のオープンおよびクローズドソース LLM を総合的に検討し、出力分布によるバイアスの程度を評価する。
4kの質問を含む2つのデータセットと、4つのバイアス次元それぞれに100万の質問 -- を使用して、モデル間でのバイアスがどのように現れるかを理解するために、機能的類似度を測定します。
私たちの発見は
1)微調整では出力分布が大きく変化せず,バイアスを緩和する能力が制限される。
2同じ系統木内のLLMは類似の出力分布を生じないため、一つのモデルにおける対応バイアスが同一系統内の他の系統に限られた影響を及ぼす可能性があることを示唆する。
3)データ情報の漏洩を訓練し,プライバシやデータセキュリティに関する懸念を提起するリスクがある。
我々の分析は、LLMの振る舞いに関する洞察を提供し、現実世界のデプロイメントにおける潜在的なリスクを強調します。
関連論文リスト
- Towards Resource Efficient and Interpretable Bias Mitigation in Large Language Models [1.787433808079955]
大規模言語モデル (LLM) は、学習データにおいて望ましくないバイアスを持続させる。
本稿では,小さなバイアスとアンチバイアスのエキスパートモデルを利用してバイアスを緩和し,デバイアス信号を得る。
性別、人種、宗教の偏見を緩和する実験は、いくつかの地域および世界的な偏見指標に偏見を減少させる。
論文 参考訳(メタデータ) (2024-12-02T16:56:08Z) - How far can bias go? -- Tracing bias from pretraining data to alignment [54.51310112013655]
本研究では, 事前学習データにおける性別占有バイアスと, LLMにおける性別占有バイアスの相関について検討した。
その結果,事前学習データに存在するバイアスがモデル出力に増幅されることが判明した。
論文 参考訳(メタデータ) (2024-11-28T16:20:25Z) - Investigating Implicit Bias in Large Language Models: A Large-Scale Study of Over 50 LLMs [0.0]
大規模言語モデル(LLM)は幅広いタスクで採用されている。
最近の研究では、LLMは明示的な偏見評価をパスしても暗黙の偏見を抑えることができることが示されている。
この研究は、新しい言語モデルやより大きな言語モデルが自動的にバイアスを減らさないことを強調している。
論文 参考訳(メタデータ) (2024-10-13T03:43:18Z) - REFINE-LM: Mitigating Language Model Stereotypes via Reinforcement Learning [18.064064773660174]
本稿では、強化学習を用いて様々なバイアスを微調整せずに処理する脱バイアス法REFINE-LMを紹介する。
LMの単語確率分布の上に簡単なモデルをトレーニングすることにより、バイアス強化学習法により、人間のアノテーションを使わずにモデルの偏りを抑えることができる。
複数のLMを含む多種多様なモデルで行った実験により,本手法は,LMの性能を維持しながら,ステレオタイプバイアスを著しく低減することを示した。
論文 参考訳(メタデータ) (2024-08-18T14:08:31Z) - BiasDPO: Mitigating Bias in Language Models through Direct Preference Optimization [0.0]
大規模言語モデル(LLM)は、自然言語処理の進歩において重要な役割を担っているが、バイアスの持続可能性には重大な懸念がある。
本稿では、英語テキストにおけるジェンダー、人種、宗教的偏見を緩和するために、DPO(Direct Preference Optimization)を用いた新しい枠組みを提案する。
バイアスのある完了よりもバイアスの少ない損失関数を開発することで、我々のアプローチは敬意と非差別的な言語を好む。
論文 参考訳(メタデータ) (2024-07-18T22:32:20Z) - VLBiasBench: A Comprehensive Benchmark for Evaluating Bias in Large Vision-Language Model [72.13121434085116]
我々は、LVLM(Large Vision-Language Models)におけるバイアスを評価するベンチマークであるVLBiasBenchを紹介する。
VLBiasBenchは、年齢、障害ステータス、性別、国籍、身体的外観、人種、宗教、職業、社会経済ステータスを含む9つの異なる社会バイアスのカテゴリを含むデータセットと、人種x性別と人種x社会経済ステータスの2つの交叉バイアスのカテゴリを含む。
15のオープンソースモデルと2つの高度なクローズドソースモデルに対して広範な評価を行い、これらのモデルに存在するバイアスに関する新たな洞察を得る。
論文 参考訳(メタデータ) (2024-06-20T10:56:59Z) - Replacing Judges with Juries: Evaluating LLM Generations with a Panel of Diverse Models [56.02275285521847]
LLm評価器のパネル(PoLL)を用いた評価モデルを提案する。
より多数の小さなモデルで構成されたPoLLは,1つの大判定器より優れ,不整合モデルファミリーの構成によるモデル内バイアスが小さく,しかも7倍以上のコストがかかる。
論文 参考訳(メタデータ) (2024-04-29T15:33:23Z) - ROBBIE: Robust Bias Evaluation of Large Generative Language Models [27.864027322486375]
異なるプロンプトベースのデータセットを使用して、複数のテキストドメインと人口統計軸にわたる社会的バイアスを測定することができる。
我々は,12の人口動態軸と5のジェネレーションLLMの家系の6つの異なるプロンプトベースのバイアスと毒性の指標を比較した。
3つのバイアス/毒性の緩和技術が、我々の一連の測定においていかにうまく機能するかを包括的に研究する。
論文 参考訳(メタデータ) (2023-11-29T23:03:04Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
ディープニューラルネットワークは多くの現実世界のシナリオでバイアスのある振る舞いをする。
既存のデバイアス法は、バイアスラベルやモデル再トレーニングのコストが高い。
バイアスを特定し,評価し,除去するための効率的なアプローチを提供する高速モデル脱バイアスフレームワーク(FMD)を提案する。
論文 参考訳(メタデータ) (2023-10-19T08:10:57Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
最先端自然言語処理(NLP)モデルは、意図したタスクをターゲットとする機能ではなく、データセットのバイアスや表面形状の相関をモデル化することを学ぶことが多い。
これまでの研究は、バイアスに関する知識が利用できる場合に、これらの問題を回避するための効果的な方法を示してきた。
本稿では,これらの問題点を無視する学習モデルについて述べる。
論文 参考訳(メタデータ) (2020-12-02T16:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。