MLPerf Power: Benchmarking the Energy Efficiency of Machine Learning Systems from μWatts to MWatts for Sustainable AI
- URL: http://arxiv.org/abs/2410.12032v1
- Date: Tue, 15 Oct 2024 20:06:33 GMT
- Title: MLPerf Power: Benchmarking the Energy Efficiency of Machine Learning Systems from μWatts to MWatts for Sustainable AI
- Authors: Arya Tschand, Arun Tejusve Raghunath Rajan, Sachin Idgunji, Anirban Ghosh, Jeremy Holleman, Csaba Kiraly, Pawan Ambalkar, Ritika Borkar, Ramesh Chukka, Trevor Cockrell, Oliver Curtis, Grigori Fursin, Miro Hodak, Hiwot Kassa, Anton Lokhmotov, Dejan Miskovic, Yuechao Pan, Manu Prasad Manmathan, Liz Raymond, Tom St. John, Arjun Suresh, Rowan Taubitz, Sean Zhan, Scott Wasson, David Kanter, Vijay Janapa Reddi,
- Abstract summary: Machine learning (ML) technologies have led to a surge in power consumption across diverse systems.
This paper introduceserf Power, a comprehensive benchmarking methodology to evaluate the energy efficiency of ML systems at power levels ranging from microwatts to megawatts.
- Score: 5.50579824344998
- License:
- Abstract: Rapid adoption of machine learning (ML) technologies has led to a surge in power consumption across diverse systems, from tiny IoT devices to massive datacenter clusters. Benchmarking the energy efficiency of these systems is crucial for optimization, but presents novel challenges due to the variety of hardware platforms, workload characteristics, and system-level interactions. This paper introduces MLPerf Power, a comprehensive benchmarking methodology with capabilities to evaluate the energy efficiency of ML systems at power levels ranging from microwatts to megawatts. Developed by a consortium of industry professionals from more than 20 organizations, MLPerf Power establishes rules and best practices to ensure comparability across diverse architectures. We use representative workloads from the MLPerf benchmark suite to collect 1,841 reproducible measurements from 60 systems across the entire range of ML deployment scales. Our analysis reveals trade-offs between performance, complexity, and energy efficiency across this wide range of systems, providing actionable insights for designing optimized ML solutions from the smallest edge devices to the largest cloud infrastructures. This work emphasizes the importance of energy efficiency as a key metric in the evaluation and comparison of the ML system, laying the foundation for future research in this critical area. We discuss the implications for developing sustainable AI solutions and standardizing energy efficiency benchmarking for ML systems.
Related papers
- eFedLLM: Efficient LLM Inference Based on Federated Learning [1.6179784294541053]
Large Language Models (LLMs) herald a transformative era in artificial intelligence (AI)
This paper introduces an effective approach that enhances the operational efficiency and affordability of LLM inference.
arXiv Detail & Related papers (2024-11-24T22:50:02Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - DynamoLLM: Designing LLM Inference Clusters for Performance and Energy Efficiency [7.073435885680335]
We propose DynamoLLM, the first energy-management framework for generative large language models.
At a service-level, DynamoLLM conserves 53% energy and 38% operational carbon emissions, and reduces 61% cost to the customer.
arXiv Detail & Related papers (2024-08-01T17:40:45Z) - Power Hungry Processing: Watts Driving the Cost of AI Deployment? [74.19749699665216]
generative, multi-purpose AI systems promise a unified approach to building machine learning (ML) models into technology.
This ambition of generality'' comes at a steep cost to the environment, given the amount of energy these systems require and the amount of carbon that they emit.
We measure deployment cost as the amount of energy and carbon required to perform 1,000 inferences on representative benchmark dataset using these models.
We conclude with a discussion around the current trend of deploying multi-purpose generative ML systems, and caution that their utility should be more intentionally weighed against increased costs in terms of energy and emissions
arXiv Detail & Related papers (2023-11-28T15:09:36Z) - Empowering Distributed Solutions in Renewable Energy Systems and Grid
Optimization [3.8979646385036175]
Machine learning (ML) advancements play a crucial role in empowering renewable energy sources and improving grid management.
The incorporation of big data and ML into smart grids offers several advantages, including heightened energy efficiency.
However, challenges like handling large data volumes, ensuring cybersecurity, and obtaining specialized expertise must be addressed.
arXiv Detail & Related papers (2023-10-24T02:45:16Z) - Multiagent Reinforcement Learning with an Attention Mechanism for
Improving Energy Efficiency in LoRa Networks [52.96907334080273]
As the network scale increases, the energy efficiency of LoRa networks decreases sharply due to severe packet collisions.
We propose a transmission parameter allocation algorithm based on multiagent reinforcement learning (MALoRa)
Simulation results demonstrate that MALoRa significantly improves the system EE compared with baseline algorithms.
arXiv Detail & Related papers (2023-09-16T11:37:23Z) - Towards an Efficient ML System: Unveiling a Trade-off between Task
Accuracy and Engineering Efficiency in a Large-scale Car Sharing Platform [0.0]
We propose an textitefficiency-centric ML system that illustrates numerous datasets, classifiers, out-of-distribution detectors, and prediction tables existing in the practitioners' domain into a single ML.
Under various image recognition tasks in the real world car-sharing platform, our study how we established the proposed system and lessons learned from this journey.
arXiv Detail & Related papers (2022-10-10T15:40:50Z) - MLPerfTM HPC: A Holistic Benchmark Suite for Scientific Machine Learning
on HPC Systems [32.621917787044396]
We introduceerf HPC, a benchmark suite of scientific machine learning training applications driven by the MLCommonsTM Association.
We develop a systematic framework for their joint analysis and compare them in terms of data staging, algorithmic convergence, and compute performance.
We conclude by characterizing each benchmark with respect to low-level memory, I/O, and network behavior.
arXiv Detail & Related papers (2021-10-21T20:30:12Z) - Energy-Efficient Multi-Orchestrator Mobile Edge Learning [54.28419430315478]
Mobile Edge Learning (MEL) is a collaborative learning paradigm that features distributed training of Machine Learning (ML) models over edge devices.
In MEL, possible coexistence of multiple learning tasks with different datasets may arise.
We propose lightweight algorithms that can achieve near-optimal performance and facilitate the trade-offs between energy consumption, accuracy, and solution complexity.
arXiv Detail & Related papers (2021-09-02T07:37:10Z) - Machine Learning Force Fields [54.48599172620472]
Machine Learning (ML) has enabled numerous advances in computational chemistry.
One of the most promising applications is the construction of ML-based force fields (FFs)
This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them.
arXiv Detail & Related papers (2020-10-14T13:14:14Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.