論文の概要: Testing Causal Explanations: A Case Study for Understanding the Effect of Interventions on Chronic Kidney Disease
- arxiv url: http://arxiv.org/abs/2410.12047v2
- Date: Thu, 17 Oct 2024 23:40:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 10:25:30.331495
- Title: Testing Causal Explanations: A Case Study for Understanding the Effect of Interventions on Chronic Kidney Disease
- Title(参考訳): 症例報告 慢性腎臓病に対する介入の効果の解明のための事例研究
- Authors: Panayiotis Petousis, David Gordon, Susanne B. Nicholas, Alex A. T. Bui,
- Abstract要約: 我々は大規模な電子健康記録データセットを用いた方法論を開発した。
回帰不連続性の原理は、専門家主導の介入をテストするためにランダム化されたデータサブセットを導出するために用いられた。
この方法論は、実際のEHRデータを用いて、人口レベルの洞察を提供し、医療提供の改善を知らせる方法を示している。
- 参考スコア(独自算出の注目度): 1.2449538970962482
- License:
- Abstract: Randomized controlled trials (RCTs) are the standard for evaluating the effectiveness of clinical interventions. To address the limitations of RCTs on real-world populations, we developed a methodology that uses a large observational electronic health record (EHR) dataset. Principles of regression discontinuity (rd) were used to derive randomized data subsets to test expert-driven interventions using dynamic Bayesian Networks (DBNs) do-operations. This combined method was applied to a chronic kidney disease (CKD) cohort of more than two million individuals and used to understand the associational and causal relationships of CKD variables with respect to a surrogate outcome of >=40% decline in estimated glomerular filtration rate (eGFR). The associational and causal analyses depicted similar findings across DBNs from two independent healthcare systems. The associational analysis showed that the most influential variables were eGFR, urine albumin-to-creatinine ratio, and pulse pressure, whereas the causal analysis showed eGFR as the most influential variable, followed by modifiable factors such as medications that may impact kidney function over time. This methodology demonstrates how real-world EHR data can be used to provide population-level insights to inform improved healthcare delivery.
- Abstract(参考訳): ランダム化制御試験(RCTs)は、臨床介入の有効性を評価するための標準である。
実世界の人口に対するRTTの限界に対処するため,大規模な電子健康記録(EHR)データセットを用いた手法を開発した。
回帰不連続性(rd)の原理は、動的ベイズネットワーク(DBN)による専門家主導の介入をテストするためにランダム化されたデータサブセットを導出するために用いられた。
この組み合わせは、200万人以上の慢性腎臓病(CKD)コホートに適用され、推定糸球体濾過率(eGFR)の >=40% 低下に対するCKD変数の関連性および因果関係を理解するために用いられた。
関連性および因果関係分析では、DBN全体で2つの独立した医療システムから同様の知見が得られた。
関連分析の結果,最も影響のある変数はeGFR,尿アルブミン-クレアチニン比,脈圧であった。
この方法論は、実際のEHRデータを用いて、人口レベルの洞察を提供し、医療提供の改善を知らせる方法を示している。
関連論文リスト
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - AI-Driven Predictive Analytics Approach for Early Prognosis of Chronic Kidney Disease Using Ensemble Learning and Explainable AI [0.26217304977339473]
慢性腎臓病(英: chronic Kidney Disease、CKD)は、腎臓の構造と機能に大きな影響を及ぼし、最終的に腎不全を引き起こす異種性疾患である。
本研究の目的は、アンサンブル学習と説明可能なAIを用いて、早期予後とCKDの検出のための支配的特徴、特徴スコア、および値の可視化である。
論文 参考訳(メタデータ) (2024-06-10T18:46:14Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Prediction of drug effectiveness in rheumatoid arthritis patients based
on machine learning algorithms [2.5759046095742453]
慢性関節リウマチ(RA)は、患者の免疫系が誤って自身の組織を標的としたときに引き起こされる自己免疫疾患である。
機械学習(ML)は、患者の電子的健康記録のパターンを特定し、患者の結果を改善する最良の臨床治療を予測する可能性がある。
本研究は, 臨床データから情報を取り出すためのデータ処理パイプラインを設計し, 機能的使用のために前処理し, 2) 薬物に対するRA患者の反応を予測し, 分類モデルの性能を評価するためのTNFフレームワークを導入した。
論文 参考訳(メタデータ) (2022-10-14T15:15:37Z) - Causal Discovery on the Effect of Antipsychotic Drugs on Delirium
Patients in the ICU using Large EHR Dataset [1.278093617645299]
集中治療室(ICU)の約80%の症例でデリリウムが発生する
デリリウムにはバイオマーカーによる診断がなく、一般的に抗精神病薬(APD)で治療されている。
複数の研究が、デリリウム治療におけるAPDの有効性や安全性について論争を呼んでいる。
論文 参考訳(メタデータ) (2022-04-28T21:43:02Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - Survival Analysis for Idiopathic Pulmonary Fibrosis using CT Images and
Incomplete Clinical Data [17.162038700963418]
特発性肺線維症(IPF)は線維性肺疾患である。
肺のCTスキャンはIPF患者の臨床的評価を通知し、疾患の進行に関する関連する情報を含む。
臨床および画像データを用いたIPF患者の生存率を予測するために,ニューラルネットワークとメモリバンクを用いたマルチモーダル手法を提案する。
論文 参考訳(メタデータ) (2022-03-21T23:48:47Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Segmentation analysis and the recovery of queuing parameters via the
Wasserstein distance: a study of administrative data for patients with
chronic obstructive pulmonary disease [0.0]
この研究は、慢性閉塞性肺疾患(COPD)患者のリソース要求がどのように変化するかを分析するために、データ駆動型アプローチを用いている。
これは、セグメント化、運用キューイング理論、不完全データからのパラメータの回復という、しばしば異なる分析様式の新たな組み合わせで構成されている。
論文 参考訳(メタデータ) (2020-08-10T17:47:34Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。