論文の概要: Boosting Logical Fallacy Reasoning in LLMs via Logical Structure Tree
- arxiv url: http://arxiv.org/abs/2410.12048v1
- Date: Tue, 15 Oct 2024 20:35:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:42:55.536945
- Title: Boosting Logical Fallacy Reasoning in LLMs via Logical Structure Tree
- Title(参考訳): 論理構造木によるLLMの論理的誤り推論の促進
- Authors: Yuanyuan Lei, Ruihong Huang,
- Abstract要約: 本稿では,関係接続子とその引数間の階層的論理フローを表現・追跡する論理構造木を構築することを提案する。
具体的には、この論理構造木は、選挙区木と10の共通論理関係のための接続性の分類によって導かれる教師なしの方法で構築される。
論理構造木をLLMに組み込むための2つの戦略を開発した。
- 参考スコア(独自算出の注目度): 18.351777831207965
- License:
- Abstract: Logical fallacy uses invalid or faulty reasoning in the construction of a statement. Despite the prevalence and harmfulness of logical fallacies, detecting and classifying logical fallacies still remains a challenging task. We observe that logical fallacies often use connective words to indicate an intended logical relation between two arguments, while the argument semantics does not actually support the logical relation. Inspired by this observation, we propose to build a logical structure tree to explicitly represent and track the hierarchical logic flow among relation connectives and their arguments in a statement. Specifically, this logical structure tree is constructed in an unsupervised manner guided by the constituency tree and a taxonomy of connectives for ten common logical relations, with relation connectives as non-terminal nodes and textual arguments as terminal nodes, and the latter are mostly elementary discourse units. We further develop two strategies to incorporate the logical structure tree into LLMs for fallacy reasoning. Firstly, we transform the tree into natural language descriptions and feed the textualized tree into LLMs as a part of the hard text prompt. Secondly, we derive a relation-aware tree embedding and insert the tree embedding into LLMs as a soft prompt. Experiments on benchmark datasets demonstrate that our approach based on logical structure tree significantly improves precision and recall for both fallacy detection and fallacy classification.
- Abstract(参考訳): 論理的誤りは、声明の作成において無効または欠陥推論を使用する。
論理的誤信の頻度と有害性にもかかわらず、論理的誤信の検出と分類は依然として難しい課題である。
論理的誤字はしばしば2つの引数間の意図された論理的関係を示すために接続的単語を用いるが、引数意味論は論理的関係を実際にサポートしていない。
この観測から着想を得て、関係接続子とその引数間の階層的論理フローを明示的に表現し、追跡する論理構造木を構築することを提案する。
具体的には、この論理構造木は、選挙区木と10の共通論理関係のための接続の分類を導く教師なしの方法で構築され、関係連結を非終端ノードとし、テキスト引数を終端ノードとし、後者を主に基本談話単位とする。
さらに,論理構造木をLLMに組み込むための2つの戦略を開発した。
まず、木を自然言語記述に変換し、ハードテキストプロンプトの一部としてテキスト化された木をLLMにフィードする。
次に,LLMに組み込んだ木をソフトプロンプトとして挿入する。
ベンチマークデータセットを用いた実験により,論理構造木に基づくアプローチは,誤検出と誤検出の両方の精度とリコールを大幅に向上することが示された。
関連論文リスト
- Divide and Translate: Compositional First-Order Logic Translation and Verification for Complex Logical Reasoning [28.111458981621105]
複雑な論理的推論タスクは、長い推論を必要とするが、それは、チェーン・オブ・シークレットのプロンプトを持つ大きな言語モデル(LLM)が依然として不足している。
本稿では,翻訳中に自然言語に隠された論理的意味を抽出する合成一階論理翻訳を提案する。
提案手法は,CLOVERと呼ばれる7つの論理的推論ベンチマークを用いて評価し,従来のニューロシンボリックアプローチよりも優れていたことを示す。
論文 参考訳(メタデータ) (2024-10-10T15:42:39Z) - Disentangling Logic: The Role of Context in Large Language Model Reasoning Capabilities [31.728976421529577]
包括的なドメイン集合からの抽象的および文脈的論理的問題に対するコントラストについて検討する。
我々は、標準的な命題論理、特に命題推論と帰納論理推論に焦点を当てる。
本実験は,LLMの論理的推論と真の推論能力に関する知見を提供することを目的としている。
論文 参考訳(メタデータ) (2024-06-04T21:25:06Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
最近開発された大規模言語モデル (LLM) は、幅広い言語理解タスクにおいて非常によく機能することが示されている。
しかし、それらは自然言語に対して本当に「理性」があるのだろうか?
この疑問は研究の注目を集めており、コモンセンス、数値、定性的など多くの推論技術が研究されている。
論文 参考訳(メタデータ) (2024-04-23T21:08:49Z) - Neuro-Symbolic Integration Brings Causal and Reliable Reasoning Proofs [95.07757789781213]
LLMの複雑な推論には2行のアプローチが採用されている。
1行の作業は様々な推論構造を持つLLMを誘導し、構造出力は自然に中間推論ステップと見なすことができる。
他方の行では、LCMのない宣言的解法を用いて推論処理を行い、推論精度は向上するが、解法のブラックボックスの性質により解釈性に欠ける。
具体的には,Prologインタプリタが生成した中間検索ログにアクセスし,人間可読推論に解釈可能であることを示す。
論文 参考訳(メタデータ) (2023-11-16T11:26:21Z) - LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
Language Models with First-Order Logic Provers [60.009969929857704]
論理的推論は、科学、数学、社会に潜在的影響を与える可能性のある人工知能にとって重要なタスクである。
本研究では、LINCと呼ばれるモジュール型ニューロシンボリックプログラミングのようなタスクを再構成する。
我々は,FOLIOとProofWriterのバランスの取れたサブセットに対して,ほぼすべての実験条件下で,3つの異なるモデルに対して顕著な性能向上を観察した。
論文 参考訳(メタデータ) (2023-10-23T17:58:40Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
本稿では,論理的推論の基盤として,対話レベルと単語レベルの両方の文脈を扱う総合グラフネットワーク(HGN)を提案する。
具体的には、ノードレベルの関係とタイプレベルの関係は、推論過程におけるブリッジと解釈できるが、階層的な相互作用機構によってモデル化される。
論文 参考訳(メタデータ) (2023-06-21T07:34:27Z) - Discourse-Aware Graph Networks for Textual Logical Reasoning [142.0097357999134]
パッセージレベルの論理関係は命題単位間の係り合いまたは矛盾を表す(例、結論文)
論理的推論QAを解くための論理構造制約モデリングを提案し、談話対応グラフネットワーク(DAGN)を導入する。
ネットワークはまず、インラインの談話接続とジェネリック論理理論を利用した論理グラフを構築し、その後、エッジ推論機構を用いて論理関係を進化させ、グラフ機能を更新することで論理表現を学習する。
論文 参考訳(メタデータ) (2022-07-04T14:38:49Z) - Logic-Driven Context Extension and Data Augmentation for Logical
Reasoning of Text [65.24325614642223]
論理的な記号や表現をテキストで理解し、答えにたどり着くよう提案します。
このような論理的情報に基づいて,文脈拡張フレームワークとデータ拡張アルゴリズムを提案する。
本手法は最先端の性能を実現し,論理駆動コンテキスト拡張フレームワークとデータ拡張アルゴリズムの両方が精度向上に寄与する。
論文 参考訳(メタデータ) (2021-05-08T10:09:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。