CATCH: Channel-Aware multivariate Time Series Anomaly Detection via Frequency Patching
- URL: http://arxiv.org/abs/2410.12261v1
- Date: Wed, 16 Oct 2024 05:58:55 GMT
- Title: CATCH: Channel-Aware multivariate Time Series Anomaly Detection via Frequency Patching
- Authors: Xingjian Wu, Xiangfei Qiu, Zhengyu Li, Yihang Wang, Jilin Hu, Chenjuan Guo, Hui Xiong, Bin Yang,
- Abstract summary: We introduce CATCH, a framework based on frequency patching.
We propose a Channel Fusion Module (CFM) which features a patch-wise mask generator and a masked-attention mechanism.
Experiments on 9 real-world datasets and 12 synthetic datasets demonstrate that CATCH achieves state-of-the-art performance.
- Score: 24.927390742543707
- License:
- Abstract: Anomaly detection in multivariate time series is challenging as heterogeneous subsequence anomalies may occur. Reconstruction-based methods, which focus on learning nomral patterns in the frequency domain to detect diverse abnormal subsequences, achieve promising resutls, while still falling short on capturing fine-grained frequency characteristics and channel correlations. To contend with the limitations, we introduce CATCH, a framework based on frequency patching. We propose to patchify the frequency domain into frequency bands, which enhances its ability to capture fine-grained frequency characteristics. To perceive appropriate channel correlations, we propose a Channel Fusion Module (CFM), which features a patch-wise mask generator and a masked-attention mechanism. Driven by a bi-level multi-objective optimization algorithm, the CFM is encouraged to iteratively discover appropriate patch-wise channel correlations, and to cluster relevant channels while isolating adverse effects from irrelevant channels. Extensive experiments on 9 real-world datasets and 12 synthetic datasets demonstrate that CATCH achieves state-of-the-art performance.
Related papers
- Frequency Guidance Matters: Skeletal Action Recognition by Frequency-Aware Mixed Transformer [18.459822172890473]
We introduce a frequency-aware attention module to unweave skeleton frequency representations.
We also develop a mixed transformer architecture to incorporate spatial features with frequency features.
Experiments show that FreqMiXFormer outperforms SOTA on 3 popular skeleton recognition datasets.
arXiv Detail & Related papers (2024-07-17T05:47:27Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - Correlated Attention in Transformers for Multivariate Time Series [22.542109523780333]
We propose a novel correlated attention mechanism, which efficiently captures feature-wise dependencies, and can be seamlessly integrated within the encoder blocks of existing Transformers.
In particular, correlated attention operates across feature channels to compute cross-covariance matrices between queries and keys with different lag values, and selectively aggregate representations at the sub-series level.
This architecture facilitates automated discovery and representation learning of not only instantaneous but also lagged cross-correlations, while inherently capturing time series auto-correlation.
arXiv Detail & Related papers (2023-11-20T17:35:44Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Deep Reinforcement Learning for IRS Phase Shift Design in
Spatiotemporally Correlated Environments [93.30657979626858]
We propose a deep actor-critic algorithm that accounts for channel correlations and destination motion.
We show that, when channels aretemporally correlated, the inclusion of the SNR in the state representation with function approximation in ways that inhibit convergence.
arXiv Detail & Related papers (2022-11-02T22:07:36Z) - Adaptive Frequency Learning in Two-branch Face Forgery Detection [66.91715092251258]
We propose Adaptively learn Frequency information in the two-branch Detection framework, dubbed AFD.
We liberate our network from the fixed frequency transforms, and achieve better performance with our data- and task-dependent transform layers.
arXiv Detail & Related papers (2022-03-27T14:25:52Z) - Omni-frequency Channel-selection Representations for Unsupervised
Anomaly Detection [11.926787216956459]
We propose a novel Omni-frequency Channel-selection Reconstruction (OCR-GAN) network to handle anomaly detection task in a perspective of frequency.
We show that our approach markedly surpasses the reconstruction-based baseline by +38.1 and the current SOTA method by +0.3.
arXiv Detail & Related papers (2022-03-01T06:35:15Z) - F-FADE: Frequency Factorization for Anomaly Detection in Edge Streams [53.70940420595329]
We propose F-FADE, a new approach for detection of anomalies in edge streams.
It uses a novel frequency-factorization technique to efficiently model the time-evolving distributions of frequencies of interactions between node-pairs.
F-FADE is able to handle in an online streaming setting a broad variety of anomalies with temporal and structural changes, while requiring only constant memory.
arXiv Detail & Related papers (2020-11-09T19:55:40Z) - Deep Learning Based Antenna Selection for Channel Extrapolation in FDD
Massive MIMO [54.54508321463112]
In massive multiple-input multiple-output (MIMO) systems, the large number of antennas would bring a great challenge for the acquisition of the accurate channel state information.
We utilize the neural networks (NNs) to capture the inherent connection between the uplink and downlink channel data sets and extrapolate the downlink channels from a subset of the uplink channel state information.
We study the antenna subset selection problem in order to achieve the best channel extrapolation and decrease the data size of NNs.
arXiv Detail & Related papers (2020-09-03T13:38:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.