Game Theory Meets Statistical Mechanics in Deep Learning Design
- URL: http://arxiv.org/abs/2410.12264v1
- Date: Wed, 16 Oct 2024 06:02:18 GMT
- Title: Game Theory Meets Statistical Mechanics in Deep Learning Design
- Authors: Djamel Bouchaffra, Fayçal Ykhlef, Bilal Faye, Hanane Azzag, Mustapha Lebbah,
- Abstract summary: We present a novel deep representation that seamlessly merges principles of game theory with laws of statistical mechanics.
It performs feature extraction, dimensionality reduction, and pattern classification within a single learning framework.
- Score: 0.06990493129893112
- License:
- Abstract: We present a novel deep graphical representation that seamlessly merges principles of game theory with laws of statistical mechanics. It performs feature extraction, dimensionality reduction, and pattern classification within a single learning framework. Our approach draws an analogy between neurons in a network and players in a game theory model. Furthermore, each neuron viewed as a classical particle (subject to statistical physics' laws) is mapped to a set of actions representing specific activation value, and neural network layers are conceptualized as games in a sequential cooperative game theory setting. The feed-forward process in deep learning is interpreted as a sequential game, where each game comprises a set of players. During training, neurons are iteratively evaluated and filtered based on their contributions to a payoff function, which is quantified using the Shapley value driven by an energy function. Each set of neurons that significantly contributes to the payoff function forms a strong coalition. These neurons are the only ones permitted to propagate the information forward to the next layers. We applied this methodology to the task of facial age estimation and gender classification. Experimental results demonstrate that our approach outperforms both multi-layer perceptron and convolutional neural network models in terms of efficiency and accuracy.
Related papers
- Don't Cut Corners: Exact Conditions for Modularity in Biologically Inspired Representations [52.48094670415497]
We develop a theory of when biologically inspired representations modularise with respect to source variables (sources)
We derive necessary and sufficient conditions on a sample of sources that determine whether the neurons in an optimal biologically-inspired linear autoencoder modularise.
Our theory applies to any dataset, extending far beyond the case of statistical independence studied in previous work.
arXiv Detail & Related papers (2024-10-08T17:41:37Z) - Understanding Activation Patterns in Artificial Neural Networks by
Exploring Stochastic Processes [0.0]
We propose utilizing the framework of processes, which has been underutilized thus far.
We focus solely on activation frequency, leveraging neuroscience techniques used for real neuron spike trains.
We derive parameters describing activation patterns in each network, revealing consistent differences across architectures and training sets.
arXiv Detail & Related papers (2023-08-01T22:12:30Z) - Evaluating alignment between humans and neural network representations in image-based learning tasks [5.657101730705275]
We tested how well the representations of $86$ pretrained neural network models mapped to human learning trajectories.
We found that while training dataset size was a core determinant of alignment with human choices, contrastive training with multi-modal data (text and imagery) was a common feature of currently publicly available models that predicted human generalisation.
In conclusion, pretrained neural networks can serve to extract representations for cognitive models, as they appear to capture some fundamental aspects of cognition that are transferable across tasks.
arXiv Detail & Related papers (2023-06-15T08:18:29Z) - Diffused Redundancy in Pre-trained Representations [98.55546694886819]
We take a closer look at how features are encoded in pre-trained representations.
We find that learned representations in a given layer exhibit a degree of diffuse redundancy.
Our findings shed light on the nature of representations learned by pre-trained deep neural networks.
arXiv Detail & Related papers (2023-05-31T21:00:50Z) - Utility-Probability Duality of Neural Networks [4.871730595406078]
We propose an alternative utility-based explanation to the standard supervised learning procedure in deep learning.
The basic idea is to interpret the learned neural network not as a probability model but as an ordinal utility function.
We show that for all neural networks with softmax outputs, the SGD learning dynamic of maximum likelihood estimation can be seen as an iteration process.
arXiv Detail & Related papers (2023-05-24T08:09:07Z) - Cones: Concept Neurons in Diffusion Models for Customized Generation [41.212255848052514]
This paper finds a small cluster of neurons in a diffusion model corresponding to a particular subject.
The concept neurons demonstrate magnetic properties in interpreting and manipulating generation results.
For large-scale applications, the concept neurons are environmentally friendly as we only need to store a sparse cluster of int index instead of dense float32 values.
arXiv Detail & Related papers (2023-03-09T09:16:04Z) - Detecting Modularity in Deep Neural Networks [8.967870619902211]
We consider the problem of assessing the modularity exhibited by a partitioning of a network's neurons.
We propose two proxies for this: importance, which reflects how crucial sets of neurons are to network performance; and coherence, which reflects how consistently their neurons associate with features of the inputs.
We show that these partitionings, even ones based only on weights, reveal groups of neurons that are important and coherent.
arXiv Detail & Related papers (2021-10-13T20:33:30Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - The Connection Between Approximation, Depth Separation and Learnability
in Neural Networks [70.55686685872008]
We study the connection between learnability and approximation capacity.
We show that learnability with deep networks of a target function depends on the ability of simpler classes to approximate the target.
arXiv Detail & Related papers (2021-01-31T11:32:30Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
We propose a novel neural generative model inspired by the theory of predictive processing in the brain.
In a similar way, artificial neurons in our generative model predict what neighboring neurons will do, and adjust their parameters based on how well the predictions matched reality.
arXiv Detail & Related papers (2020-12-07T01:20:38Z) - Compositional Explanations of Neurons [52.71742655312625]
We describe a procedure for explaining neurons in deep representations by identifying compositional logical concepts.
We use this procedure to answer several questions on interpretability in models for vision and natural language processing.
arXiv Detail & Related papers (2020-06-24T20:37:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.