Towards Flexible and Efficient Diffusion Low Light Enhancer
- URL: http://arxiv.org/abs/2410.12346v1
- Date: Wed, 16 Oct 2024 08:07:18 GMT
- Title: Towards Flexible and Efficient Diffusion Low Light Enhancer
- Authors: Guanzhou Lan, Qianli Ma, Yuqi Yang, Zhigang Wang, Dong Wang, Yuan Yuan, Bin Zhao,
- Abstract summary: Diffusion-based Low-Light Image Enhancement (LLIE) has demonstrated significant success in improving the visibility of low-light images.
We propose textbfReflectance-aware textbfDiffusion with textbfDistilled textbfTrajectory (textbfReDDiT), a step distillation framework specifically designed for LLIE.
- Score: 30.515393168075448
- License:
- Abstract: Diffusion-based Low-Light Image Enhancement (LLIE) has demonstrated significant success in improving the visibility of low-light images. However, the substantial computational burden introduced by the iterative sampling process remains a major concern. Current acceleration methods, whether training-based or training-free, often lead to significant performance degradation. As a result, to achieve an efficient student model with performance comparable to that of existing multi-step teacher model, it is usually necessary to retrain a more capable teacher model. This approach introduces inflexibility, as it requires additional training to enhance the teacher's performance. To address these challenges, we propose \textbf{Re}flectance-aware \textbf{D}iffusion with \textbf{Di}stilled \textbf{T}rajectory (\textbf{ReDDiT}), a step distillation framework specifically designed for LLIE. ReDDiT trains a student model to replicate the teacher's trajectory in fewer steps while also possessing the ability to surpass the teacher's performance. Specifically, we first introduce a trajectory decoder from the teacher model to provide guidance. Subsequently, a reflectance-aware trajectory refinement module is incorporated into the distillation process to enable more deterministic guidance from the teacher model. Our framework achieves comparable performance to previous diffusion-based methods with redundant steps in just 2 steps while establishing new state-of-the-art (SOTA) results with 8 or 4 steps. Comprehensive experimental evaluations on 10 benchmark datasets validate the effectiveness of our method, consistently outperforming existing SOTA methods.
Related papers
- Representation Alignment for Generation: Training Diffusion Transformers Is Easier Than You Think [72.48325960659822]
One main bottleneck in training large-scale diffusion models for generation lies in effectively learning these representations.
We study this by introducing a straightforward regularization called REPresentation Alignment (REPA), which aligns the projections of noisy input hidden states in denoising networks with clean image representations obtained from external, pretrained visual encoders.
The results are striking: our simple strategy yields significant improvements in both training efficiency and generation quality when applied to popular diffusion and flow-based transformers, such as DiTs and SiTs.
arXiv Detail & Related papers (2024-10-09T14:34:53Z) - Distillation-Free One-Step Diffusion for Real-World Image Super-Resolution [81.81748032199813]
We propose a Distillation-Free One-Step Diffusion model.
Specifically, we propose a noise-aware discriminator (NAD) to participate in adversarial training.
We improve the perceptual loss with edge-aware DISTS (EA-DISTS) to enhance the model's ability to generate fine details.
arXiv Detail & Related papers (2024-10-05T16:41:36Z) - Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
Knowledge distillation (KD) is a technique that compresses large teacher models by training smaller student models to mimic them.
This paper introduces Online Knowledge Distillation (OKD), where the teacher network integrates small online modules to concurrently train with the student model.
OKD achieves or exceeds the performance of leading methods in various model architectures and sizes, reducing training time by up to fourfold.
arXiv Detail & Related papers (2024-09-19T07:05:26Z) - Step-On-Feet Tuning: Scaling Self-Alignment of LLMs via Bootstrapping [53.454408491386886]
bootstrapping self-alignment markedly surpasses the single-round approach.
We propose Step-On-Feet Tuning (SOFT) which leverages model's continuously enhanced few-shot ability to boost zero or one-shot performance.
Based on easy-to-hard training recipe, we propose SOFT+ which further boost self-alignment's performance.
arXiv Detail & Related papers (2024-02-12T12:30:42Z) - You Only Need One Step: Fast Super-Resolution with Stable Diffusion via
Scale Distillation [42.599077240711]
YONOS-SR is a stable diffusion-based approach for image super-resolution that yields state-of-the-art results using only a single DDIM step.
We propose a novel scale distillation approach to train our SR model.
arXiv Detail & Related papers (2024-01-30T18:49:44Z) - SinSR: Diffusion-Based Image Super-Resolution in a Single Step [119.18813219518042]
Super-resolution (SR) methods based on diffusion models exhibit promising results.
But their practical application is hindered by the substantial number of required inference steps.
We propose a simple yet effective method for achieving single-step SR generation, named SinSR.
arXiv Detail & Related papers (2023-11-23T16:21:29Z) - FD-Align: Feature Discrimination Alignment for Fine-tuning Pre-Trained
Models in Few-Shot Learning [21.693779973263172]
In this paper, we introduce a fine-tuning approach termed Feature Discrimination Alignment (FD-Align)
Our method aims to bolster the model's generalizability by preserving the consistency of spurious features.
Once fine-tuned, the model can seamlessly integrate with existing methods, leading to performance improvements.
arXiv Detail & Related papers (2023-10-23T17:12:01Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.