論文の概要: Open Ko-LLM Leaderboard2: Bridging Foundational and Practical Evaluation for Korean LLMs
- arxiv url: http://arxiv.org/abs/2410.12445v1
- Date: Wed, 16 Oct 2024 10:49:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:44:19.522125
- Title: Open Ko-LLM Leaderboard2: Bridging Foundational and Practical Evaluation for Korean LLMs
- Title(参考訳): Open Ko-LLM Leaderboard2: 韓国のLLMの基礎的および実践的評価
- Authors: Hyeonwoo Kim, Dahyun Kim, Jihoo Kim, Sukyung Lee, Yungi Kim, Chanjun Park,
- Abstract要約: 我々は、以前のOpen Ko-LLM Leaderboardの改良版であるOpen Ko-LLM Leaderboard2を提案する。
オリジナルのベンチマークは、現実の能力とより密に整合した新しいタスクに完全に置き換えられている。
韓国語の特徴をよりよく反映するために、4つの新しい韓国語ベンチマークが導入されている。
- 参考スコア(独自算出の注目度): 7.924819546105335
- License:
- Abstract: The Open Ko-LLM Leaderboard has been instrumental in benchmarking Korean Large Language Models (LLMs), yet it has certain limitations. Notably, the disconnect between quantitative improvements on the overly academic leaderboard benchmarks and the qualitative impact of the models should be addressed. Furthermore, the benchmark suite is largely composed of translated versions of their English counterparts, which may not fully capture the intricacies of the Korean language. To address these issues, we propose Open Ko-LLM Leaderboard2, an improved version of the earlier Open Ko-LLM Leaderboard. The original benchmarks are entirely replaced with new tasks that are more closely aligned with real-world capabilities. Additionally, four new native Korean benchmarks are introduced to better reflect the distinct characteristics of the Korean language. Through these refinements, Open Ko-LLM Leaderboard2 seeks to provide a more meaningful evaluation for advancing Korean LLMs.
- Abstract(参考訳): Open Ko-LLM Leaderboardは、韓国大言語モデル(LLM)のベンチマークに役立っているが、いくつかの制限がある。
特に、過度に学術的なリーダーボードベンチマークの量的改善と、モデルの質的な影響の相違に対処する必要がある。
さらに、ベンチマークスイートは、大半が英語の翻訳版で構成されており、韓国語の複雑さを完全には捉えていないかもしれない。
これらの問題に対処するため、以前のOpen Ko-LLM Leaderboardの改良版であるOpen Ko-LLM Leaderboard2を提案する。
オリジナルのベンチマークは、現実の能力とより密に整合した新しいタスクに完全に置き換えられている。
さらに、韓国語の特徴をよりよく反映するために、4つの新しい韓国語ベンチマークが導入されている。
これらの改良を通じて、Open Ko-LLM Leaderboard2は、韓国のLLMを前進させる上で、より有意義な評価を提供することを目指している。
関連論文リスト
- Bridging the Language Gaps in Large Language Models with Inference-Time Cross-Lingual Intervention [71.12193680015622]
大規模言語モデル(LLM)は自然言語処理において顕著な能力を示している。
LLMは異なる言語間で大きな性能差を示す。
Inference-Time Cross-Lingual Intervention (INCLINE) を提案する。
論文 参考訳(メタデータ) (2024-10-16T11:23:03Z) - RedWhale: An Adapted Korean LLM Through Efficient Continual Pretraining [0.0]
韓国語処理に特化したモデルであるRedWhaleを紹介する。
RedWhaleは、韓国の包括的コーパス前処理パイプラインを含む効率的な継続事前訓練アプローチを用いて開発されている。
実験の結果、RedWhaleは韓国のNLPベンチマークで他の主要なモデルよりも優れていた。
論文 参考訳(メタデータ) (2024-08-21T02:49:41Z) - Deep Exploration of Cross-Lingual Zero-Shot Generalization in Instruction Tuning [47.75550640881761]
非英語タスクに適用することで、命令チューニングにおける言語間一般化について検討する。
我々は、言語における不一致を軽減するために言語間テンプレートを設計し、トレーニングと推論の間のテンプレートの命令形式を規定する。
実験の結果,英語と韓国語の両方の言語間一般化による一貫した改善が示された。
論文 参考訳(メタデータ) (2024-06-13T04:10:17Z) - Open Ko-LLM Leaderboard: Evaluating Large Language Models in Korean with Ko-H5 Benchmark [11.389789978431446]
本稿では,韓国の大規模言語モデル(LLM)を評価する上で重要なツールとして,Open Ko-LLM LeaderboardとKo-H5ベンチマークを紹介する。
論文 参考訳(メタデータ) (2024-05-31T02:05:45Z) - Efficient and Effective Vocabulary Expansion Towards Multilingual Large
Language Models [9.359647125218359]
本報告では,韓国語による大規模言語モデルの適応である texttEEVE-Korean-v1.0 を紹介する。
我々の手法は、わずか20億のトークンで非英語の習熟度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2024-02-22T17:12:39Z) - KMMLU: Measuring Massive Multitask Language Understanding in Korean [32.06346608507584]
KMMLUは、人文科学からSTEMまで、45科目にわたる35,030名のエキスパートレベルの多重選択質問を備えた、韓国の新しいベンチマークである。
以前の韓国のベンチマークは既存の英語のベンチマークから翻訳されるが、KMMLUはオリジナルの韓国の試験から収集される。
論文 参考訳(メタデータ) (2024-02-18T11:41:07Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
我々は,命令追従出力の識別におけるLLM評価器の能力をテストするために,挑戦的なメタ評価ベンチマーク LLMBar を導入する。
異なる評価器がLLMBarに対して異なる性能を示し、最高の評価器でさえ改善の余地があることが判明した。
論文 参考訳(メタデータ) (2023-10-11T16:38:11Z) - Improving Translation Faithfulness of Large Language Models via
Augmenting Instructions [89.76691340615848]
SWIE(Segment-Weighted Instruction Embedding)と命令追従データセットOVERMISSを提案する。
SWIEは、以下の入力および応答表現に大域的な命令表現を追加することにより、モデル命令理解を改善する。
OVERMISSは、オーバー翻訳とミス翻訳の結果を正しい翻訳と比較することにより、モデルの忠実度を向上させる。
論文 参考訳(メタデータ) (2023-08-24T09:32:29Z) - CLEVA: Chinese Language Models EVAluation Platform [92.42981537317817]
CLEVAは,中国のLLMを階層的に評価するためのユーザフレンドリーなプラットフォームである。
当社のプラットフォームでは,LLMのパフォーマンスをさまざまな次元で評価するために標準化されたワークフローを採用し,定期的に競合するリーダボードを更新しています。
汚染を軽減するため、CLEVAは、新しいデータのかなりの割合をキュレーションし、各リーダーボードラウンドのユニークなサブセットを保証するサンプリング戦略を開発する。
マウスクリック数回とモデルAPIを必要とする使い勝手の良いインターフェースと、最小限のコーディングで徹底的な評価を行うことができる。
論文 参考訳(メタデータ) (2023-08-09T09:11:31Z) - KOBEST: Korean Balanced Evaluation of Significant Tasks [3.664687661363732]
自然言語処理(NLP)分野の進歩を加速させる上で,十分に構成されたベンチマークが重要な役割を担っている。
我々は,韓国語下流5つのタスクからなる重要なタスク(KoBEST)について,韓国語バランス評価という新しいベンチマークを提案する。
論文 参考訳(メタデータ) (2022-04-09T20:13:51Z) - CUGE: A Chinese Language Understanding and Generation Evaluation
Benchmark [144.05723617401674]
汎用言語インテリジェンス評価は、自然言語処理の長年の目標である。
汎用言語インテリジェンス評価には,ベンチマーク自体が包括的で体系的なものである必要がある,と我々は主張する。
以下に示す機能を備えた中国語理解・生成評価ベンチマークであるCUGEを提案する。
論文 参考訳(メタデータ) (2021-12-27T11:08:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。