論文の概要: MlingConf: A Comprehensive Study of Multilingual Confidence Estimation on Large Language Models
- arxiv url: http://arxiv.org/abs/2410.12478v1
- Date: Wed, 16 Oct 2024 11:46:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:42:42.228304
- Title: MlingConf: A Comprehensive Study of Multilingual Confidence Estimation on Large Language Models
- Title(参考訳): MlingConf: 大規模言語モデルにおける多言語信頼度推定に関する総合的研究
- Authors: Boyang Xue, Hongru Wang, Rui Wang, Sheng Wang, Zezhong Wang, Yiming Du, Bin Liang, Kam-Fai Wong,
- Abstract要約: 本稿では,多言語信頼度推定(MlingConf)の大規模言語モデル(LLM)に関する包括的調査を紹介する。
このベンチマークは、LAタスクのための4つの厳密にチェックされ、人間によって評価された高品質な多言語データセットと、言語の特定の社会的、文化的、地理的コンテキストに合わせて調整されたLSタスクからなる。
LAのタスクでは、英語が他の言語よりも言語的優位性を示す一方で、LSタスクでは、質問関連言語を用いてLSMを誘導し、多言語的信頼度推定において言語的優位性を改善することが示されている。
- 参考スコア(独自算出の注目度): 23.384966485398184
- License:
- Abstract: The tendency of Large Language Models (LLMs) to generate hallucinations raises concerns regarding their reliability. Therefore, confidence estimations indicating the extent of trustworthiness of the generations become essential. However, current LLM confidence estimations in languages other than English remain underexplored. This paper addresses this gap by introducing a comprehensive investigation of Multilingual Confidence estimation (MlingConf) on LLMs, focusing on both language-agnostic (LA) and language-specific (LS) tasks to explore the performance and language dominance effects of multilingual confidence estimations on different tasks. The benchmark comprises four meticulously checked and human-evaluate high-quality multilingual datasets for LA tasks and one for the LS task tailored to specific social, cultural, and geographical contexts of a language. Our experiments reveal that on LA tasks English exhibits notable linguistic dominance in confidence estimations than other languages, while on LS tasks, using question-related language to prompt LLMs demonstrates better linguistic dominance in multilingual confidence estimations. The phenomena inspire a simple yet effective native-tone prompting strategy by employing language-specific prompts for LS tasks, effectively improving LLMs' reliability and accuracy on LS tasks.
- Abstract(参考訳): 大きな言語モデル(LLM)が幻覚を生み出す傾向は、その信頼性に関する懸念を引き起こす。
そのため、世代間の信頼度を示す信頼度推定が不可欠となる。
しかし、現在の英語以外の言語でのLLMの信頼度は未定である。
本稿では,LLMにおける多言語信頼度推定(MlingConf)を包括的に検討し,言語に依存しない(LA)タスクと言語固有の(LS)タスクの両方に着目し,異なるタスクに対する多言語信頼度推定(MlingConf)の効果と言語優位性について検討する。
このベンチマークは、LAタスクのための細心の注意を払ってチェックされ、人間によって評価される4つの高品質な多言語データセットと、言語の特定の社会的、文化的、地理的コンテキストに合わせて調整されたLSタスクからなる。
実験の結果,英語が他の言語よりも言語優位性を示すのに対し,LSタスクでは質問関連言語を用いてLLMを誘導し,多言語信頼度推定において言語優位性が向上していることが判明した。
この現象は、LSタスクに言語固有のプロンプトを用いることで、単純だが効果的なネイティブトーンプロンプト戦略を刺激し、LSタスクにおけるLSMの信頼性と精度を効果的に向上させる。
関連論文リスト
- Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lensは、大規模言語モデル(LLM)の多言語機能を強化する新しいアプローチである
LLMの上位層から言語に依存しない、言語固有のサブ空間内の隠された表現を操作できる。
既存のポストトレーニング手法に比べて計算資源がはるかに少ないため、優れた結果が得られる。
論文 参考訳(メタデータ) (2024-10-06T08:51:30Z) - XTRUST: On the Multilingual Trustworthiness of Large Language Models [14.128810448194699]
大規模言語モデル(LLM)は、自然言語処理(NLP)タスクにまたがる顕著な機能を示している。
現在AIコミュニティが占めている重要な質問は、これらのモデルの能力と制限に関するものだ。
Xは、最初の総合的な多言語信頼性ベンチマークである。
論文 参考訳(メタデータ) (2024-09-24T05:38:33Z) - LLM for Everyone: Representing the Underrepresented in Large Language Models [21.07409393578553]
この論文は、表現不足言語に焦点をあてて、NLPの研究と開発におけるギャップを埋めることを目的としている。
大規模言語モデル(LLM)の包括的評価を行い,それらの能力を評価する。
提案手法は、言語間連続的命令チューニング、検索に基づく言語間インコンテキスト学習、コンテキスト内クエリアライメントを網羅する。
論文 参考訳(メタデータ) (2024-09-20T20:53:22Z) - Evaluating Knowledge-based Cross-lingual Inconsistency in Large Language Models [16.942897938964638]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて例外的な性能を示している。
彼らの成功にもかかわらず、これらのモデルはしばしば異なる言語で同じ概念を処理する際に大きな矛盾を示す。
本研究は,LLMにおける言語間不整合の存在,これらの不整合が現れる特定の側面,LLMの言語間整合性と多言語機能との相関の3つの主要な疑問に焦点をあてる。
論文 参考訳(メタデータ) (2024-07-01T15:11:37Z) - Quantifying Multilingual Performance of Large Language Models Across Languages [48.40607157158246]
大規模言語モデル(LLM)は、英語、ドイツ語、フランス語のような高リソース言語で、低リソース言語の能力は依然として不十分である。
内部表現を用いたLLM性能に基づいて,言語をベンチマークし,ランク付けするための固有測度であるLanguage Rankerを提案する。
分析の結果,高リソース言語は英語との類似度が高く,性能が優れ,低リソース言語は類似度が低いことがわかった。
論文 参考訳(メタデータ) (2024-04-17T16:53:16Z) - Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models [79.46179534911019]
大規模言語モデル (LLM) は多言語機能を示しているが、トレーニングコーパスの不均衡のため、主に英語中心である。
この作業は、NLPタスクから実際のユーザクエリまで、評価を拡張します。
深い言語理解を必要とする文化関連のタスクでは、ネイティブ言語のプロンプトがより有望になる傾向があります。
論文 参考訳(メタデータ) (2024-03-15T12:47:39Z) - Analyzing and Adapting Large Language Models for Few-Shot Multilingual
NLU: Are We There Yet? [82.02076369811402]
教師付きファインチューニング(SFT)、教師付きインストラクションチューニング(SIT)、インコンテキストラーニング(ICL)は、3つの代替であり、事実上の標準的アプローチである。
提案手法は,6つの高・低リソース言語,3つの異なるNLUタスク,多種多様な言語とドメインのセットアップを用いて,3つのアプローチを網羅的かつ体系的に比較する。
そこで本研究では,教師あり指導のチューニングが,性能とリソース要件の最良のトレードオフであることを示す。
論文 参考訳(メタデータ) (2024-03-04T10:48:13Z) - Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models [117.20416338476856]
大規模言語モデル(LLM)は、特別にキュレートされた多言語並列コーパスで事前訓練されることなく、顕著な多言語機能を示す。
LLM内の言語特異的ニューロンを識別するための新しい検出手法である言語アクティベーション確率エントロピー(LAPE)を提案する。
以上の結果から,LLMが特定の言語を処理できる能力は,神経細胞のサブセットが少なすぎるためであることが示唆された。
論文 参考訳(メタデータ) (2024-02-26T09:36:05Z) - A Comprehensive Study of Multilingual Confidence Estimation on Large Language Models [23.384966485398184]
本稿では,多言語信頼度推定(MlingConf)の大規模言語モデル(LLM)に関する包括的調査を紹介する。
このベンチマークは、LAタスクのための4つの厳密にチェックされ、人間によって評価された高品質な多言語データセットと、言語の特定の社会的、文化的、地理的コンテキストに合わせて調整されたLSタスクからなる。
LAのタスクでは、英語が他の言語よりも言語的優位性を示す一方で、LSタスクでは、質問関連言語を用いてLSMを誘導し、多言語的信頼度推定において言語的優位性を改善することが示されている。
論文 参考訳(メタデータ) (2024-02-21T08:20:06Z) - CMMLU: Measuring massive multitask language understanding in Chinese [133.70911295934746]
本稿では, 自然科学, 社会科学, 工学, 人文科学など, さまざまな分野をカバーする総合的な中国のベンチマークを紹介する。
CMMLUは、中国語の文脈における大きな言語モデルの知識と推論能力の評価におけるギャップを埋める。
論文 参考訳(メタデータ) (2023-06-15T15:49:51Z) - Don't Trust ChatGPT when Your Question is not in English: A Study of
Multilingual Abilities and Types of LLMs [16.770697902481107]
大規模言語モデル(LLM)は、例外的な自然言語理解能力を示している。
本論文では,多言語環境下でのLLMの性能格差を体系的に評価する方法を提案する。
その結果,GPTは多言語設定において高い翻訳的振る舞いを示すことがわかった。
論文 参考訳(メタデータ) (2023-05-24T02:05:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。