論文の概要: Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models
- arxiv url: http://arxiv.org/abs/2403.10258v2
- Date: Thu, 20 Jun 2024 11:09:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 04:39:52.103643
- Title: Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models
- Title(参考訳): 翻訳は必要か? 大規模言語モデルを用いた多言語課題の解法に関する研究
- Authors: Chaoqun Liu, Wenxuan Zhang, Yiran Zhao, Anh Tuan Luu, Lidong Bing,
- Abstract要約: 大規模言語モデル (LLM) は多言語機能を示しているが、トレーニングコーパスの不均衡のため、主に英語中心である。
この作業は、NLPタスクから実際のユーザクエリまで、評価を拡張します。
深い言語理解を必要とする文化関連のタスクでは、ネイティブ言語のプロンプトがより有望になる傾向があります。
- 参考スコア(独自算出の注目度): 79.46179534911019
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated multilingual capabilities; yet, they are mostly English-centric due to the imbalanced training corpora. Existing works leverage this phenomenon to improve their multilingual performances through translation, primarily on natural language processing (NLP) tasks. This work extends the evaluation from NLP tasks to real user queries and from English-centric LLMs to non-English-centric LLMs. While translation into English can help improve the performance of multilingual NLP tasks for English-centric LLMs, it may not be optimal for all scenarios. For culture-related tasks that need deep language understanding, prompting in the native language tends to be more promising as it better captures the nuances of culture and language. Our experiments reveal varied behaviors among different LLMs and tasks in the multilingual context. Therefore, we advocate for more comprehensive multilingual evaluation and more efforts toward developing multilingual LLMs beyond English-centric ones.
- Abstract(参考訳): 大規模言語モデル (LLM) は多言語機能を示しているが、トレーニングコーパスの不均衡のため、主に英語中心である。
既存の研究は、この現象を利用して、自然言語処理(NLP)タスクを中心に、翻訳を通じて多言語のパフォーマンスを改善する。
本研究は、NLPタスクから実際のユーザクエリ、英語中心のLLMから非英語中心のLLMまで、評価を拡張した。
英語への翻訳は、英語中心のLLMのための多言語NLPタスクのパフォーマンスを向上させるのに役立つが、全てのシナリオに最適ではないかもしれない。
深い言語理解を必要とする文化関連のタスクでは、文化や言語のニュアンスをよりよく捉えるため、ネイティブ言語でのプロンプトがより有望になる傾向があります。
実験により,多言語文脈におけるLLMとタスクの多様な挙動が明らかになった。
そこで我々は、より包括的な多言語評価と多言語LLM開発への取り組みを、英語を中心としたものを超えて提唱する。
関連論文リスト
- Dictionary Insertion Prompting for Multilingual Reasoning on Multilingual Large Language Models [52.00446751692225]
textbfDictionary textbfInsertion textbfPrompting (textbfDIP) という,新規かつシンプルで効果的な方法を提案する。
非英語のプロンプトを提供する際、DIPは単語辞書を調べ、単語の英語のプロンプトをLLMのプロンプトに挿入する。
そして、英語へのより良い翻訳とより良い英語モデル思考のステップを可能にし、明らかにより良い結果をもたらす。
論文 参考訳(メタデータ) (2024-11-02T05:10:50Z) - Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lensは、大規模言語モデル(LLM)の多言語機能を強化する新しいアプローチである
LLMの上位層から言語に依存しない、言語固有のサブ空間内の隠された表現を操作できる。
既存のポストトレーニング手法に比べて計算資源がはるかに少ないため、優れた結果が得られる。
論文 参考訳(メタデータ) (2024-10-06T08:51:30Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
大きな言語モデル(LLM)は印象的な言語機能を示している。
本研究では,LLMの自然多言語アライメント改善について検討する。
質問翻訳データ(すなわち注釈付き回答なし)に基づいて学習したLLMは、英語と幅広い言語との整合を促進できることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:46:19Z) - Decomposed Prompting: Unveiling Multilingual Linguistic Structure
Knowledge in English-Centric Large Language Models [12.700783525558721]
GPT-3やLLaMAのような英語中心のLarge Language Models (LLM)は、多言語タスクを実行する素晴らしい能力を示している。
本稿では,シーケンスラベリングタスクにおいて,これらのLLMの言語構造理解を探索するための分解的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-02-28T15:15:39Z) - Turning English-centric LLMs Into Polyglots: How Much Multilinguality Is Needed? [40.13166574854085]
英語中心の大規模言語モデルにおいて,多言語間の一般化を実現するために必要な最小限の多言語性について検討する。
複数言語から3言語までの多言語命令チューニングは,効果的な言語間一般化を実現するのに必要かつ十分であることがわかった。
論文 参考訳(メタデータ) (2023-12-20T00:49:52Z) - How Vocabulary Sharing Facilitates Multilingualism in LLaMA? [19.136382859468693]
大きな言語モデル(LLM)は英語のタスクに強いパフォーマンスを示すが、他の言語には制限がある。
本研究では,語彙共有の観点からLLMの多言語的能力について検討する。
論文 参考訳(メタデータ) (2023-11-15T16:13:14Z) - Eliciting the Translation Ability of Large Language Models via Multilingual Finetuning with Translation Instructions [68.01449013641532]
大規模事前学習言語モデル(LLM)は多言語翻訳において強力な能力を示している。
本稿では,多言語事前学習言語モデルであるXGLM-7Bを微調整して,多言語翻訳を行う方法を提案する。
論文 参考訳(メタデータ) (2023-05-24T12:00:24Z) - Don't Trust ChatGPT when Your Question is not in English: A Study of
Multilingual Abilities and Types of LLMs [16.770697902481107]
大規模言語モデル(LLM)は、例外的な自然言語理解能力を示している。
本論文では,多言語環境下でのLLMの性能格差を体系的に評価する方法を提案する。
その結果,GPTは多言語設定において高い翻訳的振る舞いを示すことがわかった。
論文 参考訳(メタデータ) (2023-05-24T02:05:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。