MedAide: Towards an Omni Medical Aide via Specialized LLM-based Multi-Agent Collaboration
- URL: http://arxiv.org/abs/2410.12532v2
- Date: Thu, 17 Oct 2024 09:22:41 GMT
- Title: MedAide: Towards an Omni Medical Aide via Specialized LLM-based Multi-Agent Collaboration
- Authors: Jinjie Wei, Dingkang Yang, Yanshu Li, Qingyao Xu, Zhaoyu Chen, Mingcheng Li, Yue Jiang, Xiaolu Hou, Lihua Zhang,
- Abstract summary: Large Language Model (LLM)-driven interactive systems currently show potential promise in healthcare domains.
This paper proposes MedAide, an omni medical multi-agent collaboration framework for specialized healthcare services.
- Score: 16.062646854608094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Model (LLM)-driven interactive systems currently show potential promise in healthcare domains. Despite their remarkable capabilities, LLMs typically lack personalized recommendations and diagnosis analysis in sophisticated medical applications, causing hallucinations and performance bottlenecks. To address these challenges, this paper proposes MedAide, an LLM-based omni medical multi-agent collaboration framework for specialized healthcare services. Specifically, MedAide first performs query rewriting through retrieval-augmented generation to accomplish accurate medical intent understanding. Immediately, we devise a contextual encoder to obtain intent prototype embeddings, which are used to recognize fine-grained intents by similarity matching. According to the intent relevance, the activated agents collaborate effectively to provide integrated decision analysis. Extensive experiments are conducted on four medical benchmarks with composite intents. Experimental results from automated metrics and expert doctor evaluations show that MedAide outperforms current LLMs and improves their medical proficiency and strategic reasoning.
Related papers
- DynamiCare: A Dynamic Multi-Agent Framework for Interactive and Open-Ended Medical Decision-Making [4.801722645791233]
DynamiCare is a novel dynamic multi-agent framework that models clinical diagnosis as a multi-round, interactive loop.<n>We demonstrate the feasibility and effectiveness of DynamiCare through extensive experiments.
arXiv Detail & Related papers (2025-07-03T13:43:10Z) - MAM: Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis via Role-Specialized Collaboration [57.98393950821579]
We introduce the Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis (MAM)<n>Inspired by our empirical findings, MAM decomposes the medical diagnostic process into specialized roles: a General Practitioner, Specialist Team, Radiologist, Medical Assistant, and Director.<n>This modular and collaborative framework enables efficient knowledge updates and leverages existing medical LLMs and knowledge bases.
arXiv Detail & Related papers (2025-06-24T17:52:43Z) - MedSyn: Enhancing Diagnostics with Human-AI Collaboration [19.23358929400838]
Large Language Models (LLMs) have shown promise as tools for supporting clinical decision-making.<n>We propose a hybrid human-AI framework, MedSyn, where physicians and LLMs engage in multi-step, interactive dialogues to refine diagnoses and treatment decisions.
arXiv Detail & Related papers (2025-05-07T09:37:18Z) - Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
Large language models (LLMs) often struggle with open-ended medical questions.
We propose a novel approach utilizing structured medical reasoning.
Our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models.
arXiv Detail & Related papers (2025-03-05T05:24:55Z) - MedHallBench: A New Benchmark for Assessing Hallucination in Medical Large Language Models [0.0]
Medical Large Language Models (MLLMs) have demonstrated potential in healthcare applications.
Their propensity for hallucinations presents substantial risks to patient care.
This paper introduces MedHallBench, a comprehensive benchmark framework for evaluating and mitigating hallucinations in MLLMs.
arXiv Detail & Related papers (2024-12-25T16:51:29Z) - Medchain: Bridging the Gap Between LLM Agents and Clinical Practice through Interactive Sequential Benchmarking [58.25862290294702]
We present MedChain, a dataset of 12,163 clinical cases that covers five key stages of clinical workflow.<n>We also propose MedChain-Agent, an AI system that integrates a feedback mechanism and a MCase-RAG module to learn from previous cases and adapt its responses.
arXiv Detail & Related papers (2024-12-02T15:25:02Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
We study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation.<n>Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools.
arXiv Detail & Related papers (2024-11-16T18:19:53Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - A Demonstration of Adaptive Collaboration of Large Language Models for Medical Decision-Making [38.2229221645303]
Large Language Models (LLMs) promise to streamline this process by synthesizing vast medical knowledge and multi-modal health data.
Our MDAgents address this need by dynamically assigning collaboration structures to LLMs based on task complexity.
This framework improves diagnostic accuracy and supports adaptive responses in complex, real-world medical scenarios.
arXiv Detail & Related papers (2024-10-31T22:58:08Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
We introduce the RuleAlign framework, designed to align Large Language Models with specific diagnostic rules.
We develop a medical dialogue dataset comprising rule-based communications between patients and physicians.
Experimental results demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-08-22T17:44:40Z) - MDAgents: An Adaptive Collaboration of LLMs for Medical Decision-Making [45.74980058831342]
We introduce a novel multi-agent framework, named Medical Decision-making Agents (MDAgents)
The assigned solo or group collaboration structure is tailored to the medical task at hand, emulating real-world medical decision-making processes.
MDAgents achieved the best performance in seven out of ten benchmarks on tasks requiring an understanding of medical knowledge.
arXiv Detail & Related papers (2024-04-22T06:30:05Z) - MedKP: Medical Dialogue with Knowledge Enhancement and Clinical Pathway
Encoding [48.348511646407026]
We introduce the Medical dialogue with Knowledge enhancement and clinical Pathway encoding framework.
The framework integrates an external knowledge enhancement module through a medical knowledge graph and an internal clinical pathway encoding via medical entities and physician actions.
arXiv Detail & Related papers (2024-03-11T10:57:45Z) - Asclepius: A Spectrum Evaluation Benchmark for Medical Multi-Modal Large
Language Models [59.60384461302662]
We introduce Asclepius, a novel benchmark for evaluating Medical Multi-Modal Large Language Models (Med-MLLMs)
Asclepius rigorously and comprehensively assesses model capability in terms of distinct medical specialties and different diagnostic capacities.
We also provide an in-depth analysis of 6 Med-MLLMs and compare them with 5 human specialists.
arXiv Detail & Related papers (2024-02-17T08:04:23Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - CLIPSyntel: CLIP and LLM Synergy for Multimodal Question Summarization
in Healthcare [16.033112094191395]
We introduce the Multimodal Medical Question Summarization (MMQS) dataset.
This dataset pairs medical queries with visual aids, facilitating a richer and more nuanced understanding of patient needs.
We also propose a framework, consisting of four modules that identify medical disorders, generate relevant context, filter medical concepts, and craft visually aware summaries.
arXiv Detail & Related papers (2023-12-16T03:02:05Z) - MedAgents: Large Language Models as Collaborators for Zero-shot Medical Reasoning [35.804520192679874]
Large language models (LLMs) encounter significant barriers in medicine and healthcare.
We propose MedAgents, a novel multi-disciplinary collaboration framework for the medical domain.
Our work focuses on the zero-shot setting, which is applicable in real-world scenarios.
arXiv Detail & Related papers (2023-11-16T11:47:58Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
Large language models (LLMs) have shown promising capabilities in mimicking human-level language comprehension and reasoning.
This paper provides a comprehensive review on the applications and implications of LLMs in medicine.
arXiv Detail & Related papers (2023-11-03T13:51:36Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
Medical artificial general intelligence (MAGI) enables one foundation model to solve different medical tasks.
We propose a new paradigm called Medical-knedge-enhanced mulTimOdal pretRaining (MOTOR)
arXiv Detail & Related papers (2023-04-26T01:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.