Quantum subspace verification for error correction codes
- URL: http://arxiv.org/abs/2410.12551v1
- Date: Wed, 16 Oct 2024 13:28:33 GMT
- Title: Quantum subspace verification for error correction codes
- Authors: Junjie Chen, Pei Zeng, Qi Zhao, Xiongfeng Ma, You Zhou,
- Abstract summary: We introduce a framework of quantum subspace verification, employing the knowledge of quantum error correction code subspaces to reduce the potential measurement budgets.
For certain codes like the notable Calderbank-Shor-Steane codes and QLDPC stabilizer codes, the setting number and sample complexity can be significantly reduced.
By combining the proposed subspace verification and direct fidelity estimation, we construct a protocol to verify the fidelity of general magic logical states.
- Score: 13.856955493134908
- License:
- Abstract: Benchmarking the performance of quantum error correction codes in physical systems is crucial for achieving fault-tolerant quantum computing. Current methodologies, such as (shadow) tomography or direct fidelity estimation, fall short in efficiency due to the neglect of possible prior knowledge about quantum states. To address the challenge, we introduce a framework of quantum subspace verification, employing the knowledge of quantum error correction code subspaces to reduce the potential measurement budgets. Specifically, we give the sample complexity to estimate the fidelity to the target subspace under some confidence level. Building on the framework, verification operators are developed, which can be implemented with experiment-friendly local measurements for stabilizer codes and quantum low-density parity-check (QLDPC) codes. Our constructions require $O(n-k)$ local measurement settings for both, and the sample complexity of $O(n-k)$ for stabilizer codes and of $O((n-k)^2)$ for generic QLDPC codes, where $n$ and $k$ are the numbers of physical and logical qubits, respectively. Notably, for certain codes like the notable Calderbank-Shor-Steane codes and QLDPC stabilizer codes, the setting number and sample complexity can be significantly reduced and are even independent of $n$. In addition, by combining the proposed subspace verification and direct fidelity estimation, we construct a protocol to verify the fidelity of general magic logical states with exponentially smaller sample complexity than previous methods. Our finding facilitates efficient and feasible verification of quantum error correction codes and also magical states, advancing the realization in practical quantum platforms.
Related papers
- Non-local resources for error correction in quantum LDPC codes [0.0]
Surface code suffers from a low encoding rate, requiring a vast number of physical qubits for large-scale quantum computation.
hypergraph product codes present a promising alternative, as both their encoding rate and distance scale with block size.
Recent advancements have shown how to deterministically perform high-fidelity cavity enabled non-local many-body gates.
arXiv Detail & Related papers (2024-09-09T17:28:41Z) - Near-optimal decoding algorithm for color codes using Population Annealing [44.99833362998488]
We implement a decoder that finds the recovery operation with the highest success probability.
We study the decoder performance on a 4.8.8 color code lattice under different noise models.
arXiv Detail & Related papers (2024-05-06T18:17:42Z) - High-rate quantum LDPC codes for long-range-connected neutral atom registers [0.0]
High-rate quantum error correcting (QEC) codes with moderate overheads in qubit number and control complexity are desirable for fault-tolerant quantum computing.
We show how these codes can be integrated in two-dimensional static neutral atom qubit architectures with open boundaries.
arXiv Detail & Related papers (2024-04-19T17:14:03Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Entanglement Purification with Quantum LDPC Codes and Iterative Decoding [5.5165579223151795]
We use QLDPC codes to distill GHZ states, as the resulting high-fidelity logical GHZ states can interact directly with the code used to perform distributed quantum computing.
Our results apply to larger size GHZ states as well, where we extend our technical result about a measurement property of $3$-qubit GHZ states to construct a scalable GHZ purification protocol.
arXiv Detail & Related papers (2022-10-25T16:42:32Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Automated discovery of autonomous quantum error correction schemes [0.0]
We develop and demonstrate a computational approach based on adjoint optimization for discovering autonomous quantum error correcting codes.
We show that varying the Hamiltonian distance in Fock space leads to discovery of different and new error correcting schemes.
We propose a hardware-efficient implementation based on superconducting circuits.
arXiv Detail & Related papers (2021-08-05T17:53:40Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Building a fault-tolerant quantum computer using concatenated cat codes [44.03171880260564]
We present a proposed fault-tolerant quantum computer based on cat codes with outer quantum error-correcting codes.
We numerically simulate quantum error correction when the outer code is either a repetition code or a thin rectangular surface code.
We find that with around 1,000 superconducting circuit components, one could construct a fault-tolerant quantum computer.
arXiv Detail & Related papers (2020-12-07T23:22:40Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Describing quantum metrology with erasure errors using weight
distributions of classical codes [9.391375268580806]
We consider using quantum probe states with a structure that corresponds to classical $[n,k,d]$ binary block codes of minimum distance.
We obtain bounds on the ultimate precision that these probe states can give for estimating the unknown magnitude of a classical field.
arXiv Detail & Related papers (2020-07-06T16:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.