Small Quantum Low Parity Density Check Codes for Near-Term Experiments
- URL: http://arxiv.org/abs/2507.09690v1
- Date: Sun, 13 Jul 2025 15:53:16 GMT
- Title: Small Quantum Low Parity Density Check Codes for Near-Term Experiments
- Authors: Christian Kraglund Andersen, Eliška Greplová,
- Abstract summary: We present a simple construction recipe for small quantum LDPC codes based on recent developments in the field.<n>Our codes are approximately twice as efficient as comparable surface codes, yet require only weight-four parity checks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is widely accepted that quantum error correction is essential for realizing large-scale fault-tolerant quantum computing. Recent experiments have demonstrated error correction codes operating below threshold, primarily using local planar codes such as the surface code and color code. In parallel, theoretical advances in quantum low-density parity-check (LDPC) codes promise significantly lower overheads, albeit at the cost of requiring non-local parity checks. While these results are encouraging, implementing such codes remains challenging for near-term experiments, creating obstacles to holistic benchmarking of hardware architectures capable of supporting long-range couplers. In this work, we present a simple construction recipe for small quantum LDPC codes based on recent developments in the field. Our codes are approximately twice as efficient as comparable surface codes, yet require only weight-four parity checks, which simplifies experimental realization compared to other quantum LDPC codes. We provide concrete proposals for implementations with superconducting qubits in flip-chip architectures and with semiconductor spin qubits using shuttling-based approaches.
Related papers
- Directional Codes: a new family of quantum LDPC codes on hexagonal- and square-grid connectivity hardware [0.0]
Utility-scale quantum computing requires quantum error correction (QEC) to protect quantum information against noise.<n>Currently, superconducting hardware is a promising candidate for achieving fault tolerance due to its fast gate times and feasible scalability.<n>We construct a new family of qLDPC codes, which outperforms the rotated planar code (RPC)<n>We numerically evaluate the performance of directional codes, encoding four, six and twelve logical qubits.
arXiv Detail & Related papers (2025-07-25T16:57:21Z) - Quantum LDPC codes for erasure-biased atomic quantum processors [0.0]
Quantum Low-Density Parity-Check (LDPC) codes have been recently shown to provide a path towards fault-tolerant quantum computing.<n>We demonstrate that when the dominant errors are erasures, quantum LDPC codes additionally provide high thresholds and even stronger logical error suppression.
arXiv Detail & Related papers (2025-02-27T15:23:40Z) - List Decodable Quantum LDPC Codes [49.2205789216734]
We give a construction of Quantum Low-Density Parity Check (QLDPC) codes with near-optimal rate-distance tradeoff.
We get efficiently list decodable QLDPC codes with unique decoders.
arXiv Detail & Related papers (2024-11-06T23:08:55Z) - Quantum subspace verification for error correction codes [13.856955493134908]
We introduce a framework of quantum subspace verification, employing the knowledge of quantum error correction code subspaces to reduce the potential measurement budgets.
For certain codes like the notable Calderbank-Shor-Steane codes and QLDPC stabilizer codes, the setting number and sample complexity can be significantly reduced.
By combining the proposed subspace verification and direct fidelity estimation, we construct a protocol to verify the fidelity of general magic logical states.
arXiv Detail & Related papers (2024-10-16T13:28:33Z) - Near-optimal decoding algorithm for color codes using Population Annealing [44.99833362998488]
We implement a decoder that finds the recovery operation with the highest success probability.
We study the decoder performance on a 4.8.8 color code lattice under different noise models.
arXiv Detail & Related papers (2024-05-06T18:17:42Z) - High-rate quantum LDPC codes for long-range-connected neutral atom registers [0.0]
High-rate quantum error correcting (QEC) codes with moderate overheads in qubit number and control complexity are desirable for fault-tolerant quantum computing.<n>We analyze a family of Low-Density Parity-Check (LDPC) codes with limited long-range interactions and outline a near-term implementation in neutral atom registers.
arXiv Detail & Related papers (2024-04-19T17:14:03Z) - Comparative study of quantum error correction strategies for the heavy-hexagonal lattice [41.94295877935867]
Topological quantum error correction is a milestone in the scaling roadmap of quantum computers.<n>The square-lattice surface code has become the workhorse to address this challenge.<n>In some platforms, however, the connectivities are kept even lower in order to minimise gate errors.
arXiv Detail & Related papers (2024-02-03T15:28:27Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
Quantum LDPC codes range from the surface code, which has a vanishing encoding rate, to very promising codes with constant encoding rate and linear distance.
We devise small quantum codes that are inspired by a subset of quantum LDPC codes, known as generalized bicycle (GB) codes.
arXiv Detail & Related papers (2024-01-15T10:38:13Z) - Quaternary Neural Belief Propagation Decoding of Quantum LDPC Codes with Overcomplete Check Matrices [45.997444794696676]
Quantum low-density parity-check (QLDPC) codes are promising candidates for error correction in quantum computers.<n>One of the major challenges in implementing QLDPC codes in quantum computers is the lack of a universal decoder.<n>We first propose to decode QLDPC codes with a belief propagation (BP) decoder operating on overcomplete check matrices.<n>We extend the neural BP (NBP) decoder, which was originally studied for suboptimal binary BP decoding of QLPDC codes, to quaternary BP decoders.
arXiv Detail & Related papers (2023-08-16T08:24:06Z) - Single-shot decoding of good quantum LDPC codes [38.12919328528587]
We prove that quantum Tanner codes facilitate single-shot quantum error correction (QEC) of adversarial noise.
We show that in order to suppress errors over multiple repeated rounds of QEC, it suffices to run the parallel decoding algorithm for constant time in each round.
arXiv Detail & Related papers (2023-06-21T18:00:01Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Building a fault-tolerant quantum computer using concatenated cat codes [44.03171880260564]
We present a proposed fault-tolerant quantum computer based on cat codes with outer quantum error-correcting codes.
We numerically simulate quantum error correction when the outer code is either a repetition code or a thin rectangular surface code.
We find that with around 1,000 superconducting circuit components, one could construct a fault-tolerant quantum computer.
arXiv Detail & Related papers (2020-12-07T23:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.