論文の概要: Rethinking Visual Counterfactual Explanations Through Region Constraint
- arxiv url: http://arxiv.org/abs/2410.12591v1
- Date: Wed, 16 Oct 2024 14:10:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:43:53.793467
- Title: Rethinking Visual Counterfactual Explanations Through Region Constraint
- Title(参考訳): 地域制約による視覚的非現実的説明の再考
- Authors: Bartlomiej Sobieski, Jakub Grzywaczewski, Bartlomiej Sadlej, Matthew Tivnan, Przemyslaw Biecek,
- Abstract要約: 現在の最先端のアプローチでは、領域の制約という重要なコンポーネントが欠如している、と私たちは主張します。
新たな最先端を大きなマージンで設定することに加えて、RCSBを拡張して、正確な反ファクト推論を可能にします。
- 参考スコア(独自算出の注目度): 4.893345190925178
- License:
- Abstract: Visual counterfactual explanations (VCEs) have recently gained immense popularity as a tool for clarifying the decision-making process of image classifiers. This trend is largely motivated by what these explanations promise to deliver -- indicate semantically meaningful factors that change the classifier's decision. However, we argue that current state-of-the-art approaches lack a crucial component -- the region constraint -- whose absence prevents from drawing explicit conclusions, and may even lead to faulty reasoning due to phenomenons like confirmation bias. To address the issue of previous methods, which modify images in a very entangled and widely dispersed manner, we propose region-constrained VCEs (RVCEs), which assume that only a predefined image region can be modified to influence the model's prediction. To effectively sample from this subclass of VCEs, we propose Region-Constrained Counterfactual Schr\"odinger Bridges (RCSB), an adaptation of a tractable subclass of Schr\"odinger Bridges to the problem of conditional inpainting, where the conditioning signal originates from the classifier of interest. In addition to setting a new state-of-the-art by a large margin, we extend RCSB to allow for exact counterfactual reasoning, where the predefined region contains only the factor of interest, and incorporating the user to actively interact with the RVCE by predefining the regions manually.
- Abstract(参考訳): 近年,画像分類器の意思決定プロセスを明確にするためのツールとして,視覚的対物的説明法 (VCE) が広く普及している。
この傾向は、これらの説明が約束する -- 分類者の決定を変える意味的に意味のある要素を示す -- によって大きく動機付けられている。
しかし、現在最先端のアプローチには重要な要素 -- 領域の制約 -- が欠如していることは明確な結論を導き出すことを防ぎ、確認バイアスのような現象による誤った推論につながるかもしれない、と我々は論じている。
そこで我々は,領域制約付きVCE(Regional Constrained VCEs, RVCEs)を提案する。
このVCEのサブクラスを効果的にサンプリングするために、関心の分類器から条件付信号が発する条件付塗布問題に対して、Schr\"odinger Bridges(RCSB)のトラクタブルサブクラスを適応させる領域制約付き対向型Schr\"odinger Bridges(RCSB)を提案する。
新たな最先端を大きなマージンで設定することに加え、我々はRCSBを拡張して、予め定義された領域が興味のある要素のみを含むような、正確な反ファクト推論を可能にし、ユーザが手動で領域を事前定義することでRVCEとアクティブに対話できるようにする。
関連論文リスト
- Perturb, Attend, Detect and Localize (PADL): Robust Proactive Image Defense [5.150608040339816]
本稿では,クロスアテンションに基づく符号化と復号の対称スキームを用いて,画像固有の摂動を生成する新しいソリューションであるPADLを紹介する。
提案手法は,StarGANv2,BlendGAN,DiffAE,StableDiffusion,StableDiffusionXLなど,さまざまなアーキテクチャ設計の未確認モデルに一般化する。
論文 参考訳(メタデータ) (2024-09-26T15:16:32Z) - Explainable Image Recognition via Enhanced Slot-attention Based Classifier [28.259040737540797]
本稿では,修正スロットアテンション機構に基づく視覚的に説明可能な分類器であるESCOUTERを紹介する。
ESCOUTERは、高い分類精度を提供するだけでなく、意思決定の背後にある理由についてより透明な洞察を提供することによって、自分自身を区別している。
ESCOUTER専用の新しい損失関数は、モデルの振舞いを微調整し、肯定的な説明と否定的な説明の切り替えを可能にするように設計されている。
論文 参考訳(メタデータ) (2024-07-08T05:05:43Z) - Causal Prototype-inspired Contrast Adaptation for Unsupervised Domain
Adaptive Semantic Segmentation of High-resolution Remote Sensing Imagery [8.3316355693186]
本稿では,異なるHRSIsドメインとそれらの意味ラベル間の不変因果機構を探索するプロトタイプインスパイアされたコントラスト適応(CPCA)手法を提案する。
ソースとターゲットのドメインイメージから因果的特徴とバイアス的特徴を、因果的特徴のアンタングルメントモジュールを通じて切り離す。
さらに因果的・偏見的特徴を非相関化するために、因果的介入モジュールを導入してバイアス的特徴に介入し、反事実的非偏見的サンプルを生成する。
論文 参考訳(メタデータ) (2024-03-06T13:39:18Z) - Progressive Feature Self-reinforcement for Weakly Supervised Semantic
Segmentation [55.69128107473125]
Weakly Supervised Semantic (WSSS) のイメージレベルラベルを用いたシングルステージアプローチを提案する。
我々は、画像内容が決定論的領域(例えば、自信ある前景と背景)と不確実領域(例えば、オブジェクト境界と誤分類されたカテゴリ)に適応的に分割して、別々の処理を行う。
そこで我々は,これらの自信のある領域と同一のクラスラベルを持つ拡張画像とのセマンティック一貫性を制約する補完的な自己強調手法を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:21:52Z) - A Closer Look at the Explainability of Contrastive Language-Image Pre-training [16.10032166963232]
Contrastive Language-image Pre-training (CLIP)は、様々なタスクに対して大きなメリットを示す強力なビジョン言語モデルである。
我々は,その信頼性を損なうような説明可能性の問題と,関連するタスクのキャパシティの制限を指摘した。
本稿では,CLIP surgery for reliable CAMを提案する。
論文 参考訳(メタデータ) (2023-04-12T07:16:55Z) - Editing Out-of-domain GAN Inversion via Differential Activations [56.62964029959131]
本稿では,構成分解パラダイムを用いて,ドメイン外反転問題に対処する新しいGAN事前編集フレームワークを提案する。
生成されたDiff-CAMマスクの助けを借りて、粗い再構成を直感的に元の画像と編集された画像で合成することができる。
また, 分解段階において, 粗い再構成から最終微編集画像を切り離すための, GAN 以前のデゴーストネットワークを提示する。
論文 参考訳(メタデータ) (2022-07-17T10:34:58Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-08T04:09:13Z) - Crowd Counting via Perspective-Guided Fractional-Dilation Convolution [75.36662947203192]
本稿では,PFDNetと呼ばれる新しい畳み込みニューラルネットワークを用いた群集カウント手法を提案する。
連続スケールの変動をモデル化することにより、提案したPFDNetは、異なる空間位置に対応するための適切な分数拡張カーネルを選択することができる。
これは、個々の代表スケールのみを考慮した最先端技術の柔軟性を著しく向上させる。
論文 参考訳(メタデータ) (2021-07-08T07:57:00Z) - Anti-Adversarially Manipulated Attributions for Weakly and
Semi-Supervised Semantic Segmentation [24.4472594401663]
AdvCAMは、分類スコアを増やすために操作される画像の属性マップである。
この地域は当初差別的ではないと見なされ、その後の分類に関与した。
68.0 と 76.9 の mIoU をそれぞれ弱かつ半教師付きセマンティックセグメンテーションで実現する。
論文 参考訳(メタデータ) (2021-03-16T07:39:06Z) - BSN++: Complementary Boundary Regressor with Scale-Balanced Relation
Modeling for Temporal Action Proposal Generation [85.13713217986738]
我々は,時間的提案生成のための補完的境界回帰器と関係モデリングを利用する新しいフレームワークであるBSN++を提案する。
当然のことながら、提案されたBSN++は、時間的アクションローカライゼーションタスクに関するCVPR19 - ActivityNetのリーダーボードで1位にランクインした。
論文 参考訳(メタデータ) (2020-09-15T07:08:59Z) - Explainable Deep Classification Models for Domain Generalization [94.43131722655617]
説明は、深い分類網が決定を下す視覚的証拠の領域として定義される。
トレーニング戦略は周期的な正当性に基づくフィードバックを強制し、モデルが地中真実に直接対応する画像領域に焦点を合わせることを奨励する。
論文 参考訳(メタデータ) (2020-03-13T22:22:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。