論文の概要: Towards Arbitrary QUBO Optimization: Analysis of Classical and Quantum-Activated Feedforward Neural Networks
- arxiv url: http://arxiv.org/abs/2410.12636v1
- Date: Wed, 16 Oct 2024 14:55:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:43:23.993206
- Title: Towards Arbitrary QUBO Optimization: Analysis of Classical and Quantum-Activated Feedforward Neural Networks
- Title(参考訳): 任意QUBO最適化に向けて:古典的および量子活性化フィードフォワードニューラルネットワークの解析
- Authors: Chia-Tso Lai, Carsten Blank, Peter Schmelcher, Rick Mukherjee,
- Abstract要約: 二次非拘束バイナリ最適化(QUBO)は、ロジスティクス、サプライチェーン、金融、化学、IT、エネルギー部門など、多くの産業や学術分野の中心に位置する。
これらの問題は通常、多数のバイナリ変数を最適化することを伴うため、正確な解を見つけることは指数関数的に困難である。
この課題に対処するため、任意のQUBO問題に対して強力なフィードフォワードニューラルネットワーク(FNN)を開発した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Quadratic Unconstrained Binary Optimization (QUBO) sits at the heart of many industries and academic fields such as logistics, supply chain, finance, pharmaceutical science, chemistry, IT, and energy sectors, among others. These problems typically involve optimizing a large number of binary variables, which makes finding exact solutions exponentially more difficult. Consequently, most QUBO problems are classified as NP-hard. To address this challenge, we developed a powerful feedforward neural network (FNN) optimizer for arbitrary QUBO problems. In this work, we demonstrate that the FNN optimizer can provide high-quality approximate solutions for large problems, including dense 80-variable weighted MaxCut and random QUBOs, achieving an average accuracy of over 99% in less than 1.1 seconds on an 8-core CPU. Additionally, the FNN optimizer outperformed the Gurobi optimizer by 72% on 200-variable random QUBO problems within a 100-second computation time limit, exhibiting strong potential for real-time optimization tasks. Building on this model, we explored the novel approach of integrating FNNs with a quantum annealer-based activation function to create a quantum-classical encoder-decoder (QCED) optimizer, aiming to further enhance the performance of FNNs in QUBO optimization.
- Abstract(参考訳): 二次非拘束バイナリ最適化(QUBO)は、ロジスティクス、サプライチェーン、金融、薬学、化学、IT、エネルギー部門など、多くの産業や学術分野の中心に位置する。
これらの問題は通常、多数のバイナリ変数を最適化することを伴うため、正確な解を見つけることは指数関数的に困難である。
その結果、ほとんどのQUBO問題はNPハードに分類される。
この課題に対処するために、任意のQUBO問題に対して強力なフィードフォワードニューラルネットワーク(FNN)オプティマイザを開発した。
本研究では,FNNオプティマイザが80変量重み付きMaxCutやランダムQUBOなどの大問題に対して,8コアCPUで1.1秒未満で平均99%以上の精度を達成できることを示す。
さらに、FNNオプティマイザは、100秒の計算時間制限内で200変数のランダムQUBO問題に対して、Gurobiオプティマイザを72%向上させ、リアルタイム最適化タスクの強い可能性を示した。
このモデルに基づいて、量子アニールを用いたアクティベーション関数とFNNを統合して量子古典エンコーダデコーダ(QCED)最適化を行い、QUBO最適化におけるFNNの性能をさらに向上することを目的とした。
関連論文リスト
- Enhancing GNNs Performance on Combinatorial Optimization by Recurrent Feature Update [0.09986418756990156]
本稿では,組合せ最適化(CO)問題を効率よく解くために,GNNのパワーを活用して,QRF-GNNと呼ぶ新しいアルゴリズムを提案する。
QUBO緩和による損失関数の最小化による教師なし学習に依存している。
実験の結果、QRF-GNNは既存の学習ベースアプローチを大幅に上回り、最先端の手法に匹敵することがわかった。
論文 参考訳(メタデータ) (2024-07-23T13:34:35Z) - Quantum optimization using a 127-qubit gate-model IBM quantum computer can outperform quantum annealers for nontrivial binary optimization problems [0.0]
ゲートモデル量子コンピュータにおける二項最適化問題に対する包括的量子解法を提案する。
最大127キュービットの問題の正しい解を一貫して提供する。
我々は、古典的に非自明な2進最適化問題に対して、IBM量子コンピュータ上でこの解法をベンチマークする。
論文 参考訳(メタデータ) (2024-06-03T19:08:01Z) - Quantum approximate optimization via learning-based adaptive
optimization [5.399532145408153]
量子近似最適化アルゴリズム(QAOA)は、目的最適化問題の解法として設計されている。
その結果,アルゴリズムは速度,精度,効率,安定性の点で従来の近似よりも大幅に優れていた。
この研究はQAOAの全パワーを解き放つのに役立ち、実践的な古典的なタスクにおいて量子的優位性を達成するための道を開く。
論文 参考訳(メタデータ) (2023-03-27T02:14:56Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
ポートフォリオ最適化からロジスティクスに至るまで、制約付き最適化問題は業界に多い。
これらの問題の解決における主要な障害の1つは、有効な検索空間を制限する非自明なハード制約の存在である。
本研究では、Ax=bという形の任意の整数値等式制約をU(1)対称ネットワーク(TN)に直接エンコードし、それらの適用性を量子に着想を得た生成モデルとして活用する。
論文 参考訳(メタデータ) (2022-11-16T18:59:54Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
現在の量子最適化アルゴリズムでは、元の問題を二進最適化問題として表現し、量子デバイスに適した等価イジングモデルに変換する必要がある。
目的関数を計算し、制約を認証するための古典的プログラムを設計し、後に量子回路にコンパイルする。
その結果,量子近似最適化アルゴリズム (QAOA) が新たに導入された。
論文 参考訳(メタデータ) (2022-09-07T18:01:01Z) - DEBOSH: Deep Bayesian Shape Optimization [48.80431740983095]
形状最適化に適した不確実性に基づく新しい手法を提案する。
効果的なBOを可能にし、その結果の形状の質を最先端のアプローチを超えて向上させる。
論文 参考訳(メタデータ) (2021-09-28T11:01:42Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
最適な電力フロー(ACOPF)のソリューションを解決するために、ディープニューラルネットワーク(DNN)を提案します。
提案されたSIDNNは、幅広いOPFスキームと互換性がある。
他のLearning-to-OPFスキームとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-03-27T00:45:23Z) - Quantum variational optimization: The role of entanglement and problem
hardness [0.0]
本稿では, 絡み合いの役割, 変動量子回路の構造, 最適化問題の構造について検討する。
数値計算の結果,絡み合うゲートの分布を問題のトポロジに適応させる利点が示唆された。
リスク型コスト関数に条件値を適用することで最適化が向上し、最適解と重複する確率が増大することを示す。
論文 参考訳(メタデータ) (2021-03-26T14:06:54Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
自己指向型オンライン学習最適化は、ディープニューラルネットワーク(DNN)と有限要素法(FEM)計算を統合している。
本アルゴリズムは, コンプライアンスの最小化, 流体構造最適化, 伝熱促進, トラス最適化の4種類の問題によって検証された。
その結果, 直接使用法と比較して計算時間を2~5桁削減し, 実験で検証した全ての最先端アルゴリズムより優れていた。
論文 参考訳(メタデータ) (2020-02-04T20:00:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。