論文の概要: Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs
- arxiv url: http://arxiv.org/abs/2209.03386v3
- Date: Mon, 29 Apr 2024 09:54:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 03:47:11.326819
- Title: Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs
- Title(参考訳): Prog-QAOA:古典的プログラムによる資源効率の高い量子最適化のためのフレームワーク
- Authors: Bence Bakó, Adam Glos, Özlem Salehi, Zoltán Zimborás,
- Abstract要約: 現在の量子最適化アルゴリズムでは、元の問題を二進最適化問題として表現し、量子デバイスに適した等価イジングモデルに変換する必要がある。
目的関数を計算し、制約を認証するための古典的プログラムを設計し、後に量子回路にコンパイルする。
その結果,量子近似最適化アルゴリズム (QAOA) が新たに導入された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current state-of-the-art quantum optimization algorithms require representing the original problem as a binary optimization problem, which is then converted into an equivalent Ising model suitable for the quantum device. Implementing each term of the Ising model separately often results in high redundancy, significantly increasing the resources required. Instead, we propose to design classical programs for computing the objective function and certifying the constraints, and later compile them to quantum circuits, eliminating the reliance on the binary optimization problem representation. This results in a new variant of the Quantum Approximate Optimization Algorithm (QAOA), which we name the Prog-QAOA. We exploit this idea for optimization tasks like the Travelling Salesman Problem and Max-$K$-Cut and obtain circuits that are near-optimal with respect to all relevant cost measures, e.g., number of qubits, gates, and circuit depth. While we demonstrate the power of Prog-QAOA only for a particular set of paradigmatic problems, our approach is conveniently applicable to generic optimization problems.
- Abstract(参考訳): 現在の最先端量子最適化アルゴリズムは、元の問題を二進最適化問題として表現し、量子デバイスに適した等価イジングモデルに変換する必要がある。
イジングモデルの各項を個別に実装することは、しばしば高い冗長性をもたらし、必要なリソースを著しく増加させる。
代わりに、目的関数を計算し、制約を認証するための古典的プログラムを設計し、後に量子回路にコンパイルし、バイナリ最適化問題表現への依存をなくすことを提案する。
その結果,量子近似最適化アルゴリズム (QAOA) が新たに導入された。
我々は、このアイデアをトラベリングセールスマン問題やMax-K$-Cutのような最適化タスクに利用し、関連するすべてのコスト対策(例えば、キュービット数、ゲート数、回路深さ)に関して、ほぼ最適の回路を得る。
特定のパラダイム問題に対してのみ,Prog-QAOAのパワーを実証するが,本手法は汎用最適化問題に有効である。
関連論文リスト
- Performant near-term quantum combinatorial optimization [1.1999555634662633]
線形深度回路を用いた最適化問題に対する変分量子アルゴリズムを提案する。
我々のアルゴリズムは、ターゲット量子関数の各項を制御するために設計されたハミルトン生成器からなるアンサッツを使用する。
性能と資源最小化のアプローチは、潜在的な量子計算上の利点の候補として有望である、と結論付けます。
論文 参考訳(メタデータ) (2024-04-24T18:49:07Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Quantum-Informed Recursive Optimization Algorithms [0.0]
最適化問題に対する量子インフォームド再帰最適化(QIRO)アルゴリズムのファミリを提案し,実装する。
提案手法は、量子資源を利用して、問題固有の古典的還元ステップで使用される情報を得る。
バックトラック技術を用いて、量子ハードウェアの要求を増大させることなく、アルゴリズムの性能をさらに向上させる。
論文 参考訳(メタデータ) (2023-08-25T18:02:06Z) - Quantum approximate optimization via learning-based adaptive
optimization [5.399532145408153]
量子近似最適化アルゴリズム(QAOA)は、目的最適化問題の解法として設計されている。
その結果,アルゴリズムは速度,精度,効率,安定性の点で従来の近似よりも大幅に優れていた。
この研究はQAOAの全パワーを解き放つのに役立ち、実践的な古典的なタスクにおいて量子的優位性を達成するための道を開く。
論文 参考訳(メタデータ) (2023-03-27T02:14:56Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Digitized-counterdiabatic quantum approximate optimization algorithm [3.0638256603183054]
そこで本研究では, 短絡を用いて拡張したQAOAのディジタル化バージョンを提案する。
我々は,Isingモデル,古典最適化問題,P-スピンモデルにディジタルカウンセバティックQAOAを適用し,すべての場合において標準QAOAより優れていることを示す。
論文 参考訳(メタデータ) (2021-07-06T17:57:32Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Warm-starting quantum optimization [6.832341432995627]
最適化問題の緩和解に対応する初期状態を用いて量子最適化を温める方法について論じる。
これにより、量子アルゴリズムは古典的なアルゴリズムの性能保証を継承することができる。
同じ考えを他のランダム化ラウンドスキームや最適化問題に適用するのは簡単である。
論文 参考訳(メタデータ) (2020-09-21T18:00:09Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。