論文の概要: Interpretable Rule-Based System for Radar-Based Gesture Sensing: Enhancing Transparency and Personalization in AI
- arxiv url: http://arxiv.org/abs/2410.12806v1
- Date: Mon, 30 Sep 2024 16:40:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-27 06:14:40.838489
- Title: Interpretable Rule-Based System for Radar-Based Gesture Sensing: Enhancing Transparency and Personalization in AI
- Title(参考訳): レーダに基づくジェスチャーセンシングのための解釈可能なルールベースシステム:AIにおける透明性とパーソナライゼーションの促進
- Authors: Sarah Seifi, Tobias Sukianto, Cecilia Carbonelli, Lorenzo Servadei, Robert Wille,
- Abstract要約: 我々は,レーダに基づくジェスチャー検出に適した,透過的かつ解釈可能な多クラスルールベースアルゴリズムであるMIRAを紹介する。
ユーザ中心のAIエクスペリエンスを提供し、個々のユーザの振る舞いを調整するパーソナライズされたルールセットを通じて、システムの適応性を示す。
我々の研究は、MIRAが高い解釈可能性とパフォーマンスの両方を提供する能力を強調し、安全クリティカルなアプリケーションで解釈可能なAIを広く採用する可能性を強調している。
- 参考スコア(独自算出の注目度): 2.99664686845172
- License:
- Abstract: The increasing demand in artificial intelligence (AI) for models that are both effective and explainable is critical in domains where safety and trust are paramount. In this study, we introduce MIRA, a transparent and interpretable multi-class rule-based algorithm tailored for radar-based gesture detection. Addressing the critical need for understandable AI, MIRA enhances user trust by providing insight into its decision-making process. We showcase the system's adaptability through personalized rule sets that calibrate to individual user behavior, offering a user-centric AI experience. Alongside presenting a novel multi-class classification architecture, we share an extensive frequency-modulated continuous wave radar gesture dataset and evidence of the superior interpretability of our system through comparative analyses. Our research underscores MIRA's ability to deliver both high interpretability and performance and emphasizes the potential for broader adoption of interpretable AI in safety-critical applications.
- Abstract(参考訳): 安全と信頼が最重要である領域では、有効かつ説明可能なモデルに対する人工知能(AI)の需要の増加が重要である。
本研究では,レーダに基づくジェスチャー検出に適した,透過的かつ解釈可能な多クラスルールベースアルゴリズムであるMIRAを紹介する。
理解可能なAIに対する重要なニーズに対処するため、MIRAは意思決定プロセスに関する洞察を提供することで、ユーザの信頼を高める。
ユーザ中心のAIエクスペリエンスを提供し、個々のユーザの振る舞いを調整するパーソナライズされたルールセットを通じて、システムの適応性を示す。
新たなマルチクラス分類アーキテクチャの提示とともに、周波数変調連続波レーダジェスチャーデータセットと、比較分析によるシステムの優れた解釈可能性の証明を共用する。
我々の研究は、MIRAが高い解釈可能性とパフォーマンスの両方を提供する能力を強調し、安全クリティカルなアプリケーションで解釈可能なAIを広く採用する可能性を強調している。
関連論文リスト
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - Graph-Based Multi-Modal Sensor Fusion for Autonomous Driving [3.770103075126785]
本稿では,グラフに基づく状態表現の開発に焦点をあてた,マルチモーダルセンサ融合に対する新しいアプローチを提案する。
本稿では,マルチモーダルグラフを融合する最初のオンライン状態推定手法であるSensor-Agnostic Graph-Aware Kalman Filterを提案する。
提案手法の有効性を,合成および実世界の運転データセットを用いた広範囲な実験により検証した。
論文 参考訳(メタデータ) (2024-11-06T06:58:17Z) - XAI-based Feature Ensemble for Enhanced Anomaly Detection in Autonomous Driving Systems [1.3022753212679383]
本稿では,複数の Explainable AI (XAI) メソッドを統合する新しい機能アンサンブルフレームワークを提案する。
このフレームワークは、6つの多様なAIモデルにまたがって、これらのXAIメソッドによって識別されるトップ機能を融合することによって、異常の検出に不可欠な堅牢で包括的な機能のセットを生成する。
我々の技術は、AIモデルの精度、堅牢性、透明性の向上を示し、より安全で信頼性の高い自動運転システムに貢献します。
論文 参考訳(メタデータ) (2024-10-20T14:34:48Z) - An Adaptive End-to-End IoT Security Framework Using Explainable AI and LLMs [1.9662978733004601]
本稿では,機械学習(ML),説明可能なAI(XAI),大規模言語モデル(LLM)を活用した,リアルタイムIoT攻撃検出および応答のための革新的なフレームワークを提案する。
私たちのエンドツーエンドフレームワークは、モデル開発からデプロイメントへのシームレスな移行を促進するだけでなく、既存の研究でしばしば欠落している現実世界のアプリケーション機能も表しています。
論文 参考訳(メタデータ) (2024-09-20T03:09:23Z) - VERA: Validation and Evaluation of Retrieval-Augmented Systems [5.709401805125129]
VERAは、大規模言語モデル(LLM)からの出力の透明性と信頼性を高めるために設計されたフレームワークである。
VERAが意思決定プロセスを強化し、AIアプリケーションへの信頼を高める方法を示す。
論文 参考訳(メタデータ) (2024-08-16T21:59:59Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
本稿では,強化学習に基づくエージェント駆動型ジェネリックセマンティックコミュニケーションフレームワークを提案する。
本研究では, エージェント支援型セマンティックエンコーダを開発し, 適応的セマンティック抽出とサンプリングを行う。
設計モデルの有効性をUA-DETRACデータセットを用いて検証し、全体的なA-GSCフレームワークの性能向上を実証した。
論文 参考訳(メタデータ) (2024-04-10T13:24:27Z) - Representation Engineering: A Top-Down Approach to AI Transparency [132.0398250233924]
表現工学の新たな領域(RepE)を特定し,特徴付ける
RepEは、神経細胞や回路ではなく、人口レベルの表現を解析の中心に置く。
これらの手法が、広範囲の安全関連問題に対してどのようにトラクションを提供するかを紹介する。
論文 参考訳(メタデータ) (2023-10-02T17:59:07Z) - Joint Sensing, Communication, and AI: A Trifecta for Resilient THz User
Experiences [118.91584633024907]
テラヘルツ(THz)無線システムに対する拡張現実(XR)体験を最適化するために、新しい共同センシング、通信、人工知能(AI)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-29T00:39:50Z) - InteL-VAEs: Adding Inductive Biases to Variational Auto-Encoders via
Intermediary Latents [60.785317191131284]
本稿では,潜伏変数の中間集合を用いて,制御可能なバイアスでVAEを学習するための簡易かつ効果的な手法を提案する。
特に、学習した表現に対して、スパーシリティやクラスタリングといった望ましいプロパティを課すことができます。
これにより、InteL-VAEはより優れた生成モデルと表現の両方を学ぶことができる。
論文 参考訳(メタデータ) (2021-06-25T16:34:05Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z) - VATLD: A Visual Analytics System to Assess, Understand and Improve
Traffic Light Detection [15.36267013724161]
本稿では,自律運転アプリケーションにおける交通信号検知器の精度とロバスト性を評価・理解・改善する視覚分析システム,VATLDを提案する。
歪んだ表現学習は、人間に親しみやすい視覚的要約で人間の認知を強化するために、データ意味を抽出する。
また、視覚分析システムであるVATLDによる様々な性能改善戦略の有効性を実証し、自律運転における安全クリティカルな応用の実践的意義を示す。
論文 参考訳(メタデータ) (2020-09-27T22:39:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。