論文の概要: An Adaptive End-to-End IoT Security Framework Using Explainable AI and LLMs
- arxiv url: http://arxiv.org/abs/2409.13177v1
- Date: Fri, 20 Sep 2024 03:09:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 11:29:51.857158
- Title: An Adaptive End-to-End IoT Security Framework Using Explainable AI and LLMs
- Title(参考訳): 説明可能なAIとLLMを用いた適応型エンドツーエンドIoTセキュリティフレームワーク
- Authors: Sudipto Baral, Sajal Saha, Anwar Haque,
- Abstract要約: 本稿では,機械学習(ML),説明可能なAI(XAI),大規模言語モデル(LLM)を活用した,リアルタイムIoT攻撃検出および応答のための革新的なフレームワークを提案する。
私たちのエンドツーエンドフレームワークは、モデル開発からデプロイメントへのシームレスな移行を促進するだけでなく、既存の研究でしばしば欠落している現実世界のアプリケーション機能も表しています。
- 参考スコア(独自算出の注目度): 1.9662978733004601
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The exponential growth of the Internet of Things (IoT) has significantly increased the complexity and volume of cybersecurity threats, necessitating the development of advanced, scalable, and interpretable security frameworks. This paper presents an innovative, comprehensive framework for real-time IoT attack detection and response that leverages Machine Learning (ML), Explainable AI (XAI), and Large Language Models (LLM). By integrating XAI techniques such as SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) with a model-independent architecture, we ensure our framework's adaptability across various ML algorithms. Additionally, the incorporation of LLMs enhances the interpretability and accessibility of detection decisions, providing system administrators with actionable, human-understandable explanations of detected threats. Our end-to-end framework not only facilitates a seamless transition from model development to deployment but also represents a real-world application capability that is often lacking in existing research. Based on our experiments with the CIC-IOT-2023 dataset \cite{neto2023ciciot2023}, Gemini and OPENAI LLMS demonstrate unique strengths in attack mitigation: Gemini offers precise, focused strategies, while OPENAI provides extensive, in-depth security measures. Incorporating SHAP and LIME algorithms within XAI provides comprehensive insights into attack detection, emphasizing opportunities for model improvement through detailed feature analysis, fine-tuning, and the adaptation of misclassifications to enhance accuracy.
- Abstract(参考訳): IoT(Internet of Things)の指数関数的な成長は、サイバーセキュリティの脅威の複雑さと量を大幅に増加させ、高度でスケーラブルで解釈可能なセキュリティフレームワークの開発を必要としている。
本稿では、機械学習(ML)、説明可能なAI(XAI)、大規模言語モデル(LLM)を活用した、リアルタイムIoT攻撃検出および応答のための革新的で包括的なフレームワークを提案する。
SHAP(SHapley Additive exPlanations)やLIME(Local Interpretable Model-Agnostic Explanations)といったXAI技術をモデルに依存しないアーキテクチャに統合することにより、さまざまなMLアルゴリズムにまたがるフレームワークの適応性を確保する。
さらに、LSMの組み入れにより、検出決定の解釈可能性とアクセシビリティが向上し、システム管理者に検出された脅威の動作可能で人間に理解可能な説明を提供する。
私たちのエンドツーエンドフレームワークは、モデル開発からデプロイメントへのシームレスな移行を促進するだけでなく、既存の研究でしばしば欠落している現実世界のアプリケーション機能も表しています。
The CIC-IOT-2023 dataset \cite{neto2023ciciot2023}, Gemini and OPENAI LLMS shows unique strengths in attack mitigation: Gemini provide exact, focused strategy, OPENAI provides extensive, in-deepth security measures。
SHAPアルゴリズムとLIMEアルゴリズムをXAIに組み込むことで、攻撃検出、詳細な特徴分析、微調整、誤分類の適応によるモデル改善の機会を強調し、精度を高めることができる。
関連論文リスト
- LLMpatronous: Harnessing the Power of LLMs For Vulnerability Detection [0.0]
脆弱性検出のための大規模言語モデル(LLM)には、ユニークな課題がある。
脆弱性検出に機械学習モデルを使用した以前の試みは、効果がないことが証明されている。
我々は、これらの制限を緩和することに焦点を当てた、堅牢なAI駆動アプローチを提案する。
論文 参考訳(メタデータ) (2025-04-25T15:30:40Z) - Intelligent IoT Attack Detection Design via ODLLM with Feature Ranking-based Knowledge Base [0.964942474860411]
IoT(Internet of Things)デバイスは,重大なサイバーセキュリティ上の課題を導入している。
従来の機械学習(ML)技術は、混在するパターンと進化するパターンの複雑さのために、このような攻撃を検出するのに不足することが多い。
本稿では,オンデバイス大規模言語モデル(ODLLMs)を微調整と知識ベース(KB)統合で拡張し,インテリジェントなIoTネットワーク攻撃検出を実現する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-27T16:41:57Z) - A Survey of Model Extraction Attacks and Defenses in Distributed Computing Environments [55.60375624503877]
モデル抽出攻撃(MEA)は、敵がモデルを盗み、知的財産と訓練データを公開することによって、現代の機械学習システムを脅かす。
この調査は、クラウド、エッジ、フェデレーションのユニークな特性がどのように攻撃ベクトルや防御要件を形作るのかを、緊急に理解する必要に起因している。
本研究は, 自動運転車, 医療, 金融サービスといった重要な分野において, 環境要因がセキュリティ戦略にどう影響するかを実証し, 攻撃手法と防衛機構の進化を系統的に検討する。
論文 参考訳(メタデータ) (2025-02-22T03:46:50Z) - Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
計算安全性は、GenAIにおける安全性の定量的評価、定式化、研究を可能にする数学的枠組みである。
ジェイルブレイクによる悪意のあるプロンプトを検出するために, 感度解析と損失景観解析がいかに有効かを示す。
我々は、AIの安全性における信号処理の鍵となる研究課題、機会、そして重要な役割について論じる。
論文 参考訳(メタデータ) (2025-02-18T02:26:50Z) - LENS-XAI: Redefining Lightweight and Explainable Network Security through Knowledge Distillation and Variational Autoencoders for Scalable Intrusion Detection in Cybersecurity [0.0]
本研究は軽量説明可能ネットワークセキュリティフレームワーク(LENS-XAI)を紹介する。
LENS-XAIは、堅牢な侵入検知と、拡張された解釈可能性とスケーラビリティを組み合わせる。
本研究は, 計算効率, 特徴解釈可能性, 実世界の応用性に対処することで, IDSの進歩に大きく貢献する。
論文 参考訳(メタデータ) (2025-01-01T10:00:49Z) - In-Context Experience Replay Facilitates Safety Red-Teaming of Text-to-Image Diffusion Models [97.82118821263825]
テキスト・ツー・イメージ(T2I)モデルは目覚ましい進歩を見せているが、有害なコンテンツを生成する可能性はまだMLコミュニティにとって重要な関心事である。
ICERは,解釈可能かつ意味論的に意味のある重要なプロンプトを生成する新しい赤チームフレームワークである。
我々の研究は、より堅牢な安全メカニズムをT2Iシステムで開発するための重要な洞察を提供する。
論文 参考訳(メタデータ) (2024-11-25T04:17:24Z) - CTINEXUS: Leveraging Optimized LLM In-Context Learning for Constructing Cybersecurity Knowledge Graphs Under Data Scarcity [49.657358248788945]
サイバー脅威インテリジェンス(CTI)レポートのテキスト記述は、サイバー脅威に関する豊富な知識源である。
現在のCTI抽出法は柔軟性と一般化性に欠けており、しばしば不正確で不完全な知識抽出をもたらす。
CTINexusは,大規模言語モデルのテキスト内学習(ICL)を最適化した新しいフレームワークである。
論文 参考訳(メタデータ) (2024-10-28T14:18:32Z) - Interpretable Rule-Based System for Radar-Based Gesture Sensing: Enhancing Transparency and Personalization in AI [2.99664686845172]
我々は,レーダに基づくジェスチャー検出に適した,透過的かつ解釈可能な多クラスルールベースアルゴリズムであるMIRAを紹介する。
ユーザ中心のAIエクスペリエンスを提供し、個々のユーザの振る舞いを調整するパーソナライズされたルールセットを通じて、システムの適応性を示す。
我々の研究は、MIRAが高い解釈可能性とパフォーマンスの両方を提供する能力を強調し、安全クリティカルなアプリケーションで解釈可能なAIを広く採用する可能性を強調している。
論文 参考訳(メタデータ) (2024-09-30T16:40:27Z) - INTELLECT: Adapting Cyber Threat Detection to Heterogeneous Computing Environments [0.055923945039144884]
本稿では,IDSのための事前学習MLモデルと構成の動的適応のための結合パイプラインに,特徴選択,モデルプルーニング,微調整技術を統合する新しいソリューションであるINTELLECTを紹介する。
我々は,知識蒸留技術を微調整中に組み込むことの利点を実証し,MLモデルが歴史的知識を維持しつつ,局所的なネットワークパターンに一貫して適応できることを示す。
論文 参考訳(メタデータ) (2024-07-17T22:34:29Z) - XEdgeAI: A Human-centered Industrial Inspection Framework with Data-centric Explainable Edge AI Approach [2.0209172586699173]
本稿では,新しいXAI統合視覚品質検査フレームワークを提案する。
我々のフレームワークはXAIとLarge Vision Language Modelを組み込んで人間中心の解釈可能性を提供する。
このアプローチは、重要な産業アプリケーションに信頼性と解釈可能なAIツールを広く採用する道を開くものだ。
論文 参考訳(メタデータ) (2024-07-16T14:30:24Z) - Data Poisoning for In-context Learning [49.77204165250528]
In-context Learning (ICL)は、新しいタスクに適応する革新的な能力として認識されている。
本論文は、ICLのデータ中毒に対する感受性の重大な問題について述べる。
ICLの学習メカニズムを活用するために考案された特殊攻撃フレームワークであるICLPoisonを紹介する。
論文 参考訳(メタデータ) (2024-02-03T14:20:20Z) - X-CBA: Explainability Aided CatBoosted Anomal-E for Intrusion Detection System [2.556190321164248]
Intrusion Detection Systemsにおける機械学習(ML)モデルとディープラーニング(DL)モデルの使用は、不透明な意思決定による信頼の欠如につながっている。
本稿では、グラフニューラルネットワーク(GNN)の構造的利点を活用して、ネットワークトラフィックデータを効率的に処理する新しい説明可能なIDS手法であるX-CBAを提案する。
本手法は、脅威検出の99.47%で高精度に達成し、その分析結果の明確で実用的な説明を提供する。
論文 参考訳(メタデータ) (2024-02-01T18:29:16Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - HuntGPT: Integrating Machine Learning-Based Anomaly Detection and Explainable AI with Large Language Models (LLMs) [0.09208007322096533]
我々はランダムフォレスト分類器を応用した特殊な侵入検知ダッシュボードであるHuntGPTを提案する。
この論文は、Certified Information Security Manager (CISM) Practice Examsを通じて評価された、システムのアーキテクチャ、コンポーネント、技術的正確性について論じている。
その結果、LLMによってサポートされ、XAIと統合された会話エージェントは、侵入検出において堅牢で説明可能な、実行可能なAIソリューションを提供することを示した。
論文 参考訳(メタデータ) (2023-09-27T20:58:13Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
自動運転車のような安全クリティカルなアプリケーションにおける機械学習アルゴリズムのオープンワールド展開は、さまざまなML脆弱性に対処する必要がある。
一般化エラーを低減し、ドメイン適応を実現し、外乱例や敵攻撃を検出するための新しいモデルと訓練技術。
我々の組織は、MLアルゴリズムの信頼性を異なる側面から向上するために、最先端のML技術を安全戦略にマッピングする。
論文 参考訳(メタデータ) (2021-06-09T05:56:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。