Incorporating Metabolic Information into LLMs for Anomaly Detection in Clinical Time-Series
- URL: http://arxiv.org/abs/2410.12830v3
- Date: Sun, 24 Nov 2024 15:45:35 GMT
- Title: Incorporating Metabolic Information into LLMs for Anomaly Detection in Clinical Time-Series
- Authors: Maxx Richard Rahman, Ruoxuan Liu, Wolfgang Maass,
- Abstract summary: We introduce the Metabolism Pathway-driven Prompting (MPP) method, which integrates the information about metabolic pathways to better capture the structural and temporal changes in biological samples.
We applied our method for doping detection in sports, focusing on steroid metabolism, and evaluated using real-world data from athletes.
- Score: 0.4779196219827506
- License:
- Abstract: Anomaly detection in clinical time-series holds significant potential in identifying suspicious patterns in different biological parameters. In this paper, we propose a targeted method that incorporates the clinical domain knowledge into LLMs to improve their ability to detect anomalies. We introduce the Metabolism Pathway-driven Prompting (MPP) method, which integrates the information about metabolic pathways to better capture the structural and temporal changes in biological samples. We applied our method for doping detection in sports, focusing on steroid metabolism, and evaluated using real-world data from athletes. The results show that our method improves anomaly detection performance by leveraging metabolic context, providing a more nuanced and accurate prediction of suspicious samples in athletes' profiles.
Related papers
- STIED: A deep learning model for the SpatioTemporal detection of focal Interictal Epileptiform Discharges with MEG [0.08030359871216612]
Magnetoencephalography (MEG) allows the non-invasive detection of interictal epileptiform discharges (IEDs)
Deep learning (DL) could revolutionize clinical MEG practice.
We developed STIED, a powerful yet supervised DL algorithm combining two convolutional neural networks with temporal (1D time-course) and spatial (2D topography) features of MEG signals.
arXiv Detail & Related papers (2024-10-30T18:41:22Z) - Explainable Biomedical Hypothesis Generation via Retrieval Augmented Generation enabled Large Language Models [46.05020842978823]
Large Language Models (LLMs) have emerged as powerful tools to navigate this complex data landscape.
RAGGED is a comprehensive workflow designed to support investigators with knowledge integration and hypothesis generation.
arXiv Detail & Related papers (2024-07-17T07:44:18Z) - Detecting and clustering swallow events in esophageal long-term high-resolution manometry [48.688209040613216]
We propose a Deep Learning based swallowing detection method to accurately identify swallowing events and secondary non-deglutitive-induced esophageal motility disorders.
We evaluate our computational pipeline on a total of 25 LTHRMs, which were meticulously annotated by medical experts.
arXiv Detail & Related papers (2024-05-02T09:41:31Z) - Multi-View Variational Autoencoder for Missing Value Imputation in
Untargeted Metabolomics [17.563099908890013]
We propose a novel method that leverages the information from WGS data and reference metabolites to impute unknown metabolites.
By learning the latent representations of both omics data, our method can effectively impute missing metabolomics values.
arXiv Detail & Related papers (2023-10-12T02:34:56Z) - A marker-less human motion analysis system for motion-based biomarker
discovery in knee disorders [60.99112047564336]
The NHS has been having increased difficulty seeing all low-risk patients, this includes but not limited to suspected osteoarthritis (OA) patients.
We propose a novel method of automated biomarker identification for diagnosis of knee disorders and the monitoring of treatment progression.
arXiv Detail & Related papers (2023-04-26T16:47:42Z) - Artificial-intelligence-based molecular classification of diffuse
gliomas using rapid, label-free optical imaging [59.79875531898648]
DeepGlioma is an artificial-intelligence-based diagnostic screening system.
DeepGlioma can predict the molecular alterations used by the World Health Organization to define the adult-type diffuse glioma taxonomy.
arXiv Detail & Related papers (2023-03-23T18:50:18Z) - Functional Integrative Bayesian Analysis of High-dimensional
Multiplatform Genomic Data [0.8029049649310213]
We propose a framework called Functional Integrative Bayesian Analysis of High-dimensional Multiplatform Genomic Data (fiBAG)
fiBAG allows simultaneous identification of upstream functional evidence of proteogenomic biomarkers.
We demonstrate the profitability of fiBAG via a pan-cancer analysis of 14 cancer types.
arXiv Detail & Related papers (2022-12-29T03:31:45Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.