論文の概要: Large Language Models and the Rationalist Empiricist Debate
- arxiv url: http://arxiv.org/abs/2410.12895v1
- Date: Wed, 16 Oct 2024 15:49:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:22:08.817943
- Title: Large Language Models and the Rationalist Empiricist Debate
- Title(参考訳): 大規模言語モデルと合理主義経験論者討論
- Authors: David King,
- Abstract要約: 大規模言語モデルは合理主義を擁護すると主張する者もいる。
主張は、支持している経験主義の性質に依存する。
合理主義的な経験主義的議論に対するLLMの人間との関係は疑わしい。
- 参考スコア(独自算出の注目度): 0.043512163406552
- License:
- Abstract: To many Chomsky's debates with Quine and Skinner are an updated version of the Rationalist Empiricist debates of the 17th century. The consensus being that Chomsky's Rationalism was victorious. This dispute has reemerged with the advent of Large Language Models. With some arguing that LLMs vindicate rationalism because of the necessity of building in innate biases to make them work. The necessity of building in innate biases is taken to prove that empiricism hasn't got the conceptual resources to explain linguistic competence. Such claims depend on the nature of the empiricism one is endorsing. Externalized Empiricism has no difficulties with innate apparatus once they are determined empirically (Quine 1969). Thus, externalized empiricism is not refuted because of the need to build in innate biases in LLMs. Furthermore, the relevance of LLMs to the rationalist empiricist debate in relation to humans is dubious. For any claim about whether LLMs learn in an empiricist manner to be relevant to humans it needs to be shown that LLMs and humans learn in the same way. Two key features distinguish humans and LLMs. Humans learn despite a poverty of stimulus and LLMs learn because of an incredibly rich stimulus. Human linguistic outputs are grounded in sensory experience and LLMs are not. These differences in how the two learn indicates that they both use different underlying competencies to produce their output. Therefore, any claims about whether LLMs learn in an empiricist manner are not relevant to whether humans learn in an empiricist manner.
- Abstract(参考訳): 多くのチョムスキーとクワインとスキナーの論争は、17世紀の合理主義経験主義論争の改訂版である。
チョムスキーの合理主義は勝利であった。
この論争は、大規模言語モデルの出現と共に再燃した。
LLMは合理主義を擁護する論者もいる。なぜなら、自然にバイアスを生じさせる必要があるからである。
自然バイアスを構築する必要性は、経験主義が言語能力を説明するための概念的なリソースを持っていないことを証明するためである。
このような主張は、実証主義が支持している性質に依存している。
外部経験主義は、経験的に決定されると自然発生装置に困難はない(Quine 1969)。
したがって、外在的経験主義は LLM に固有のバイアスを組み込む必要があるため、否定されることはない。
さらに、LLMが人間に関する合理主義的経験主義的議論に関係していることは疑わしい。
LLMが人間と関係のある経験主義的な方法で学習するかどうかは、LLMと人間が同じように学習することを示す必要がある。
2つの重要な特徴は人間とLLMを区別する。
人間は刺激の貧困にもかかわらず学習し、LSMは信じられないほど豊かな刺激のために学習する。
人間の言語出力は感覚経験に基づいており、LLMはそうではない。
これら2つの学習方法の違いは、両者が出力を生成するために異なる基礎的能力を使用していることを示している。
したがって、LLMが経験主義的な方法で学習するかどうかについての主張は、人間が経験主義的な方法で学習するかどうかとは無関係である。
関連論文リスト
- Failure Modes of LLMs for Causal Reasoning on Narratives [51.19592551510628]
本研究では,大言語モデル(LLM)の因果推論能力について,物語から因果関係を推定する代表的な問題から検討する。
最新の言語モデルでさえ、物語の提示とパラメトリック知識の両方において、信頼できないショートカットに依存していることがわかった。
論文 参考訳(メタデータ) (2024-10-31T12:48:58Z) - Inductive or Deductive? Rethinking the Fundamental Reasoning Abilities of LLMs [99.76347807139615]
推論には2つの典型型がある: 帰納的推論(deductive reasoning)と帰納的推論(inductive reasoning)。
大規模言語モデル(LLM)の推論能力に関する広範な研究にもかかわらず、ほとんどの研究は帰納的推論と帰納的推論を厳密に区別することができなかった。
LLM推論では、帰納的または帰納的推論という、より大きな課題を引き起こします。
論文 参考訳(メタデータ) (2024-07-31T18:47:11Z) - A Comprehensive Evaluation on Event Reasoning of Large Language Models [68.28851233753856]
LLMが、様々な関係や推論パラダイムに基づいたイベント推論をいかにうまく達成するかは、いまだに不明である。
本稿ではEVent推論のEValuationのための新しいベンチマークEV2を紹介する。
LLMにはイベント推論を実現する能力があるが、その性能は十分ではない。
論文 参考訳(メタデータ) (2024-04-26T16:28:34Z) - Should We Fear Large Language Models? A Structural Analysis of the Human
Reasoning System for Elucidating LLM Capabilities and Risks Through the Lens
of Heidegger's Philosophy [0.0]
本研究では,Large Language Models(LLM)の能力とリスクについて検討する。
LLM内の単語関係の統計的パターンと、Martin Heidegger氏の概念である"ready-to-hand"と"present-at-hand"の間には、革新的な並列性がある。
以上の結果から, LLMには直接的説明推論と擬似論理推論の能力があるが, 真理的推論に乏しく, 創造的推論能力がないことが明らかとなった。
論文 参考訳(メタデータ) (2024-03-05T19:40:53Z) - (Ir)rationality and Cognitive Biases in Large Language Models [2.9008806248012333]
認知心理学文献からのタスクを用いた7つの言語モデルの評価を行った。
人間と同じく、LLMはこれらのタスクに不合理性を示す。
これらのタスクに対してLLMによって誤った答えが与えられる場合、それらはしばしば人間のようなバイアスとは異なる方法で間違っている。
論文 参考訳(メタデータ) (2024-02-14T14:17:21Z) - Conditional and Modal Reasoning in Large Language Models [1.999925939110439]
我々は条件やモーダルを含む推論パターンに焦点を当てる。
私たちがテストしたすべてのLLMは、条件やモダルでいくつかの基本的な間違いを犯しました。
最高のLCMでさえ、モーダル推論において基本的な誤りを犯す。
論文 参考訳(メタデータ) (2024-01-30T16:56:54Z) - How should the advent of large language models affect the practice of
science? [51.62881233954798]
大規模言語モデルの出現は科学の実践にどのように影響を与えるべきか?
我々は4つの科学者グループを招待し、この質問を反映し、彼らの見解を共有し、議論をおこなった。
論文 参考訳(メタデータ) (2023-12-05T10:45:12Z) - Large Language Models: The Need for Nuance in Current Debates and a
Pragmatic Perspective on Understanding [1.3654846342364308]
LLM(Large Language Models)は、文法的に正しい、流動的なテキストを生成する能力において、非並列である。
本論文は,LLM能力の批判において再発する3点を批判的に評価する。
LLMにおける現実の理解と意図の問題に関する実践的な視点を概説する。
論文 参考訳(メタデータ) (2023-10-30T15:51:04Z) - Democratizing Reasoning Ability: Tailored Learning from Large Language
Model [97.4921006089966]
そこで我々は,そのような推論能力をより小さなLMに蒸留する,適切な学習手法を提案する。
対話型多ラウンド学習パラダイムを構築することにより,理科教員としてのLLMの可能性を活用する。
より小さなLMの推論可能性を活用するために,学生が自作ミスから学習する動機付けを目的とした自己回帰学習を提案する。
論文 参考訳(メタデータ) (2023-10-20T07:50:10Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
大規模言語モデル(LLM)は、近年、自然言語と機械学習コミュニティを興奮させています。
多くの成功を収めたアプリケーションにもかかわらず、そのようなコンテキスト内機能の基盤となるメカニズムはまだ不明である。
本研究では,学習した言語トークンのテクストセマンティクスが推論過程において最も重い処理を行うと仮定する。
論文 参考訳(メタデータ) (2023-05-24T07:33:34Z) - Are LLMs the Master of All Trades? : Exploring Domain-Agnostic Reasoning
Skills of LLMs [0.0]
本研究では,大規模言語モデル(LLM)の性能について,様々な推論課題について検討する。
その結果, LLMは類推的, 道徳的推論において優れているが, 空間的推論タスクにおいて, 熟達に苦慮していることが明らかとなった。
論文 参考訳(メタデータ) (2023-03-22T22:53:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。