Gradient Map-Assisted Head and Neck Tumor Segmentation: A Pre-RT to Mid-RT Approach in MRI-Guided Radiotherapy
- URL: http://arxiv.org/abs/2410.12941v1
- Date: Wed, 16 Oct 2024 18:26:51 GMT
- Title: Gradient Map-Assisted Head and Neck Tumor Segmentation: A Pre-RT to Mid-RT Approach in MRI-Guided Radiotherapy
- Authors: Jintao Ren, Kim Hochreuter, Mathis Ersted Rasmussen, Jesper Folsted Kallehauge, Stine Sofia Korreman,
- Abstract summary: This study investigates the use of pre-RT tumor regions and local gradient maps to enhance mid-RT tumor segmentation for head and neck cancer.
A gradient map of the tumor region from the pre-RT image is computed and applied to mid-RT images to improve tumor boundary delineation.
- Score: 0.04590531202809992
- License:
- Abstract: Radiation therapy (RT) is a vital part of treatment for head and neck cancer, where accurate segmentation of gross tumor volume (GTV) is essential for effective treatment planning. This study investigates the use of pre-RT tumor regions and local gradient maps to enhance mid-RT tumor segmentation for head and neck cancer in MRI-guided adaptive radiotherapy. By leveraging pre-RT images and their segmentations as prior knowledge, we address the challenge of tumor localization in mid-RT segmentation. A gradient map of the tumor region from the pre-RT image is computed and applied to mid-RT images to improve tumor boundary delineation. Our approach demonstrated improved segmentation accuracy for both primary GTV (GTVp) and nodal GTV (GTVn), though performance was limited by data constraints. The final DSCagg scores from the challenge's test set evaluation were 0.534 for GTVp, 0.867 for GTVn, and a mean score of 0.70. This method shows potential for enhancing segmentation and treatment planning in adaptive radiotherapy. Team: DCPT-Stine's group.
Related papers
- Comparative Analysis of nnUNet and MedNeXt for Head and Neck Tumor Segmentation in MRI-guided Radiotherapy [2.13048414569993]
We present our solution as team TUMOR to the HNTS-MRG24 MICCAI Challenge.
It is focused on automated segmentation of primary gross tumor volumes (GTVp) and metastatic lymph node gross tumor volume (GTVn) in pre-RT and mid-RT MRI images.
Our solution for Task 1 achieved 1st place in the final test phase with an aggregated Dice Similarity Coefficient of 0.8254, and our solution for Task 2 ranked 8th with a score of 0.7005.
arXiv Detail & Related papers (2024-11-22T06:16:56Z) - UMambaAdj: Advancing GTV Segmentation for Head and Neck Cancer in MRI-Guided RT with UMamba and nnU-Net ResEnc Planner [0.04924932828166548]
Magnetic Resonance Imaging (MRI) plays a crucial role in adaptive radiotherapy for head and neck cancer (HNC) due to its superior soft-tissue contrast.
accurately segmenting the gross tumor volume (GTV), which includes both the primary tumor (GTVp) and lymph nodes (GTVn) remains challenging.
Recently, two deep learning segmentation innovations have shown great promise: UMamba, which effectively captures long-range dependencies, and the nnU-Net Residual (ResEnc) which enhances feature extraction through multistage residual blocks.
arXiv Detail & Related papers (2024-10-16T18:26:27Z) - Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation [47.119513326344126]
The BraTS-MEN-RT challenge aims to advance automated segmentation algorithms using the largest known multi-institutional dataset of radiotherapy planning brain MRIs.
Each case includes a defaced 3D post-contrast T1-weighted radiotherapy planning MRI in its native acquisition space.
Target volume annotations adhere to established radiotherapy planning protocols.
arXiv Detail & Related papers (2024-05-28T17:25:43Z) - A Localization-to-Segmentation Framework for Automatic Tumor
Segmentation in Whole-Body PET/CT Images [8.0523823243864]
This paper proposes a localization-to-segmentation framework (L2SNet) for precise tumor segmentation.
L2SNet first localizes the possible lesions in the lesion localization phase and then uses the location cues to shape the segmentation results in the lesion segmentation phase.
Experiments with the MII Automated Lesion in Whole-Body FDG-PET/CT challenge dataset show that our method achieved a competitive result.
arXiv Detail & Related papers (2023-09-11T13:39:15Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
We propose a hybrid deep neural network pipeline to predict tumour response to initial chemotherapy.
We leverage a combination of representation transfer from segmentation to classification, as well as localisation and representation learning.
Our approach yields a remarkably data-efficient method able to predict treatment response with a ROC-AUC of 63.7% using only 477 datasets in total.
arXiv Detail & Related papers (2022-11-08T11:50:31Z) - Recurrence-free Survival Prediction under the Guidance of Automatic
Gross Tumor Volume Segmentation for Head and Neck Cancers [8.598790229614071]
We developed an automated primary tumor (GTVp) and lymph nodes (GTVn) segmentation method.
We extracted radiomics features from the segmented tumor volume and constructed a multi-modality tumor recurrence-free survival (RFS) prediction model.
arXiv Detail & Related papers (2022-09-22T18:44:57Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - Segmentation for Classification of Screening Pancreatic Neuroendocrine
Tumors [72.65802386845002]
This work presents comprehensive results to detect in the early stage the pancreatic neuroendocrine tumors (PNETs) in abdominal CT scans.
To the best of our knowledge, this task has not been studied before as a computational task.
Our approach outperforms state-of-the-art segmentation networks and achieves a sensitivity of $89.47%$ at a specificity of $81.08%$.
arXiv Detail & Related papers (2020-04-04T21:21:44Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.