論文の概要: Facilitating Multi-turn Function Calling for LLMs via Compositional Instruction Tuning
- arxiv url: http://arxiv.org/abs/2410.12952v1
- Date: Wed, 16 Oct 2024 18:40:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:20:24.599895
- Title: Facilitating Multi-turn Function Calling for LLMs via Compositional Instruction Tuning
- Title(参考訳): 合成インストラクションチューニングによるLCMのマルチターン関数呼び出しのファシリテート
- Authors: Mingyang Chen, Haoze Sun, Tianpeng Li, Fan Yang, Hao Liang, Keer Lu, Bin Cui, Wentao Zhang, Zenan Zhou, Weipeng Chen,
- Abstract要約: 大規模言語モデル(LLM)は多様なタスクを実行する上で大きな可能性を秘めている。
本稿では,LLMがマルチターン関数呼び出しを行う上で,見過ごされる必要性に対処する。
BUTTONはボトムアップ命令構築とトップダウン軌道生成による合成合成命令チューニングデータを生成する。
- 参考スコア(独自算出の注目度): 36.17708271049462
- License:
- Abstract: Large Language Models (LLMs) have exhibited significant potential in performing diverse tasks, including the ability to call functions or use external tools to enhance their performance. While current research on function calling by LLMs primarily focuses on single-turn interactions, this paper addresses the overlooked necessity for LLMs to engage in multi-turn function calling--critical for handling compositional, real-world queries that require planning with functions but not only use functions. To facilitate this, we introduce an approach, BUTTON, which generates synthetic compositional instruction tuning data via bottom-up instruction construction and top-down trajectory generation. In the bottom-up phase, we generate simple atomic tasks based on real-world scenarios and build compositional tasks using heuristic strategies based on atomic tasks. Corresponding functions are then developed for these compositional tasks. The top-down phase features a multi-agent environment where interactions among simulated humans, assistants, and tools are utilized to gather multi-turn function calling trajectories. This approach ensures task compositionality and allows for effective function and trajectory generation by examining atomic tasks within compositional tasks. We produce a dataset BUTTONInstruct comprising 8k data points and demonstrate its effectiveness through extensive experiments across various LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)は、機能呼び出しや外部ツールを使用したパフォーマンス向上など、さまざまなタスクを実行する上で大きな可能性を秘めている。
LLMによる関数呼び出しに関する現在の研究は、主にシングルターンインタラクションに焦点を当てているが、本論文は、LLMが多ターン関数呼び出しに携わる必要性が見過ごされていることに対処する。
そこで本研究では,ボトムアップ命令構築とトップダウン軌道生成による合成合成指導データを生成するBUTTONを提案する。
ボトムアップフェーズでは、実世界のシナリオに基づいて単純な原子タスクを生成し、原子タスクに基づいたヒューリスティック戦略を用いて構成タスクを構築する。
対応する関数は、これらの合成タスクのために開発される。
トップダウンフェーズでは、シミュレーションされた人間、アシスタント、ツール間の相互作用を利用して、トラジェクトリを呼び出すマルチターン関数を収集するマルチエージェント環境が特徴である。
このアプローチはタスクの構成性を保証し、構成タスク内の原子タスクを調べることによって、効果的な機能と軌道生成を可能にする。
8kデータポイントからなるデータセット BUTTONInstruct を作成し,その有効性を示す。
関連論文リスト
- Improving Small-Scale Large Language Models Function Calling for Reasoning Tasks [0.8425561594225592]
本研究では,関数呼び出しにおいて,より小さな言語モデルを訓練するための新しいフレームワークを提案する。
特定の論理的および数学的推論タスクに焦点を当てている。
このアプローチは,関数呼び出しによるこれらのタスクの小型モデルの性能向上を目的としている。
論文 参考訳(メタデータ) (2024-10-24T16:27:35Z) - Do Large Language Models Have Compositional Ability? An Investigation into Limitations and Scalability [12.349247962800813]
大規模言語モデル(LLM)は多くのAI問題に対する強力なツールとして登場した。
また、ICL(In-context Learning)機能も備えている。
複合的なタスクにどのようにアプローチするかは、未解明の未解決の問題のままである。
論文 参考訳(メタデータ) (2024-07-22T15:22:34Z) - Granite-Function Calling Model: Introducing Function Calling Abilities via Multi-task Learning of Granular Tasks [35.97890508648945]
我々はApache 2.0ライセンスの下で-20B-FUNCTIONCALLINGモデルを紹介します。
モデルは7つの基本的なタスクに対してマルチタスクトレーニングアプローチを使用してトレーニングされる。
20B-FUNCTIONCALLINGは、7つの異なる評価データセットにおいて、複数のタスクに対してより一般化可能であることを示す。
論文 参考訳(メタデータ) (2024-06-27T17:47:26Z) - BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions [72.56339136017759]
BigCodeBenchは、大規模言語モデル(LLM)に対して、139のライブラリと7つのドメインから1140のきめ細かいタスクに対して、複数の関数呼び出しをツールとして呼び出すためのベンチマークである。
評価の結果,LLMは機能コールを正確に使用するための複雑な指示に従うことができず,スコアは最大60%,人的性能は97%と極めて低いことがわかった。
そこで本研究では,BigCodeBench-Instructという自然言語指向の変種を提案する。
論文 参考訳(メタデータ) (2024-06-22T15:52:04Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - From Summary to Action: Enhancing Large Language Models for Complex
Tasks with Open World APIs [62.496139001509114]
大規模な現実世界のAPIを制御するために設計された新しいツール呼び出しパイプラインを導入します。
このパイプラインは人間のタスク解決プロセスを反映し、複雑な実際のユーザクエリに対処する。
ToolBenchベンチマークにおけるSum2Actパイプラインの実証的な評価は、大幅なパフォーマンス向上を示している。
論文 参考訳(メタデータ) (2024-02-28T08:42:23Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - MmAP : Multi-modal Alignment Prompt for Cross-domain Multi-task Learning [29.88567810099265]
マルチタスク学習は複数の相関タスクを同時に訓練するように設計されている。
この課題に対処するために、デコーダフリーの視覚言語モデルCLIPを統合する。
CLIPのためのマルチモーダルアライメント・プロンプト(MmAP)を提案する。
論文 参考訳(メタデータ) (2023-12-14T03:33:02Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。