Super-resolving Real-world Image Illumination Enhancement: A New Dataset and A Conditional Diffusion Model
- URL: http://arxiv.org/abs/2410.12961v1
- Date: Wed, 16 Oct 2024 18:47:04 GMT
- Title: Super-resolving Real-world Image Illumination Enhancement: A New Dataset and A Conditional Diffusion Model
- Authors: Yang Liu, Yaofang Liu, Jinshan Pan, Yuxiang Hui, Fan Jia, Raymond H. Chan, Tieyong Zeng,
- Abstract summary: We propose a SRRIIE dataset with an efficient conditional diffusion probabilistic models-based method.
We capture images using an ILDC camera and an optical zoom lens with exposure levels ranging from -6 EV to 0 EV and ISO levels ranging from 50 to 12800.
We show that most existing methods are less effective in preserving the structures and sharpness of restored images from complicated noises.
- Score: 43.93772529301279
- License:
- Abstract: Most existing super-resolution methods and datasets have been developed to improve the image quality in well-lighted conditions. However, these methods do not work well in real-world low-light conditions as the images captured in such conditions lose most important information and contain significant unknown noises. To solve this problem, we propose a SRRIIE dataset with an efficient conditional diffusion probabilistic models-based method. The proposed dataset contains 4800 paired low-high quality images. To ensure that the dataset are able to model the real-world image degradation in low-illumination environments, we capture images using an ILDC camera and an optical zoom lens with exposure levels ranging from -6 EV to 0 EV and ISO levels ranging from 50 to 12800. We comprehensively evaluate with various reconstruction and perceptual metrics and demonstrate the practicabilities of the SRRIIE dataset for deep learning-based methods. We show that most existing methods are less effective in preserving the structures and sharpness of restored images from complicated noises. To overcome this problem, we revise the condition for Raw sensor data and propose a novel time-melding condition for diffusion probabilistic model. Comprehensive quantitative and qualitative experimental results on the real-world benchmark datasets demonstrate the feasibility and effectivenesses of the proposed conditional diffusion probabilistic model on Raw sensor data. Code and dataset will be available at https://github.com/Yaofang-Liu/Super-Resolving
Related papers
- HUE Dataset: High-Resolution Event and Frame Sequences for Low-Light Vision [16.432164340779266]
We introduce the HUE dataset, a collection of high-resolution event and frame sequences captured in low-light conditions.
Our dataset includes 106 sequences, encompassing indoor, cityscape, twilight, night, driving, and controlled scenarios.
We employ both qualitative and quantitative evaluations to assess state-of-the-art low-light enhancement and event-based image reconstruction methods.
arXiv Detail & Related papers (2024-10-24T21:15:15Z) - LMHaze: Intensity-aware Image Dehazing with a Large-scale Multi-intensity Real Haze Dataset [14.141433473509826]
We present LMHaze, a large-scale, high-quality real-world dataset.
LMHaze comprises paired hazy and haze-free images captured in diverse indoor and outdoor environments.
To better handle images with different haze intensities, we propose a mixture-of-experts model based on Mamba.
arXiv Detail & Related papers (2024-10-21T15:20:02Z) - Conditional Brownian Bridge Diffusion Model for VHR SAR to Optical Image Translation [5.578820789388206]
This paper introduces a conditional image-to-image translation approach based on Brownian Bridge Diffusion Model (BBDM)
We conducted comprehensive experiments on the MSAW dataset, a paired SAR and optical images collection of 0.5m Very-High-Resolution (VHR)
arXiv Detail & Related papers (2024-08-15T05:43:46Z) - Towards Robust Event-guided Low-Light Image Enhancement: A Large-Scale Real-World Event-Image Dataset and Novel Approach [7.974102031202597]
We propose a real-world (indoor and outdoor) dataset comprising over 30K pairs of images and events under both low and normal illumination conditions.
Based on the dataset, we propose a novel event-guided LIE approach, called EvLight, towards robust performance in real-world low-light scenes.
arXiv Detail & Related papers (2024-04-01T00:18:17Z) - Exposure Bracketing is All You Need for Unifying Image Restoration and Enhancement Tasks [50.822601495422916]
We propose to utilize exposure bracketing photography to unify image restoration and enhancement tasks.
Due to the difficulty in collecting real-world pairs, we suggest a solution that first pre-trains the model with synthetic paired data.
In particular, a temporally modulated recurrent network (TMRNet) and self-supervised adaptation method are proposed.
arXiv Detail & Related papers (2024-01-01T14:14:35Z) - On quantifying and improving realism of images generated with diffusion [50.37578424163951]
We propose a metric, called Image Realism Score (IRS), computed from five statistical measures of a given image.
IRS is easily usable as a measure to classify a given image as real or fake.
We experimentally establish the model- and data-agnostic nature of the proposed IRS by successfully detecting fake images generated by Stable Diffusion Model (SDM), Dalle2, Midjourney and BigGAN.
Our efforts have also led to Gen-100 dataset, which provides 1,000 samples for 100 classes generated by four high-quality models.
arXiv Detail & Related papers (2023-09-26T08:32:55Z) - Improving Lens Flare Removal with General Purpose Pipeline and Multiple
Light Sources Recovery [69.71080926778413]
flare artifacts can affect image visual quality and downstream computer vision tasks.
Current methods do not consider automatic exposure and tone mapping in image signal processing pipeline.
We propose a solution to improve the performance of lens flare removal by revisiting the ISP and design a more reliable light sources recovery strategy.
arXiv Detail & Related papers (2023-08-31T04:58:17Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - Robust photon-efficient imaging using a pixel-wise residual shrinkage
network [7.557893223548758]
Single-photon light detection and ranging (LiDAR) has been widely applied to 3D imaging in challenging scenarios.
limited signal photon counts and high noises in the collected data have posed great challenges for predicting the depth image precisely.
We propose a pixel-wise residual shrinkage network for photon-efficient imaging from high-noise data.
arXiv Detail & Related papers (2022-01-05T05:08:12Z) - Physics-based Noise Modeling for Extreme Low-light Photography [63.65570751728917]
We study the noise statistics in the imaging pipeline of CMOS photosensors.
We formulate a comprehensive noise model that can accurately characterize the real noise structures.
Our noise model can be used to synthesize realistic training data for learning-based low-light denoising algorithms.
arXiv Detail & Related papers (2021-08-04T16:36:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.