論文の概要: Evaluating the Instruction-following Abilities of Language Models using Knowledge Tasks
- arxiv url: http://arxiv.org/abs/2410.12972v1
- Date: Wed, 16 Oct 2024 19:07:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:20:23.431571
- Title: Evaluating the Instruction-following Abilities of Language Models using Knowledge Tasks
- Title(参考訳): 知識課題を用いた言語モデルの指示追従能力の評価
- Authors: Rudra Murthy, Prince Kumar, Praveen Venkateswaran, Danish Contractor,
- Abstract要約: 本稿では,タスク性能と命令追従機能の両方を検証し易い命令追従ベンチマークの開発に焦点をあてる。
既存の知識ベンチマークを適応させ、(a)知識タスクを正しく答える条件付きで強化するか、(b)複数の知識回答タスクにおいて候補オプションの空間を使用する。
大規模な命令調整 LLM でさえ、ゼロショット設定で単純な命令に従わないことがわかった。
- 参考スコア(独自算出の注目度): 4.945902994386117
- License:
- Abstract: In this work, we focus our attention on developing a benchmark for instruction-following where it is easy to verify both task performance as well as instruction-following capabilities. We adapt existing knowledge benchmarks and augment them with instructions that are a) conditional on correctly answering the knowledge task or b) use the space of candidate options in multiple-choice knowledge-answering tasks. This allows us to study model characteristics, such as their change in performance on the knowledge tasks in the presence of answer-modifying instructions and distractor instructions. In contrast to existing benchmarks for instruction following, we not only measure instruction-following capabilities but also use LLM-free methods to study task performance. We study a series of openly available large language models of varying parameter sizes (1B-405B) and closed source models namely GPT-4o-mini, GPT-4o. We find that even large-scale instruction-tuned LLMs fail to follow simple instructions in zero-shot settings. We release our dataset, the benchmark, code, and results for future work.
- Abstract(参考訳): 本研究では,タスク性能と命令追従機能の両方を検証し易い命令追従ベンチマークの開発に焦点をあてる。
既存の知識ベンチマークに適応し、それらをインストラクションで強化します。
a) 知識タスクまたは知識タスクに正しく答える条件
b) 複数選択の知識回答タスクにおいて、候補オプションの空間を使用する。
これにより,回答修正命令や注意散らし命令の存在下での知識タスクの性能変化など,モデル特性の研究が可能となる。
命令追従のための既存のベンチマークとは対照的に、命令追従能力を測定するだけでなく、LCMのない手法を用いてタスク性能を調査する。
各種パラメータサイズ(1B-405B)とGPT-4o-mini, GPT-4oのクローズドソースモデルについて検討した。
大規模な命令調整 LLM でさえ、ゼロショット設定で単純な命令に従わないことがわかった。
将来の作業のためのデータセット、ベンチマーク、コード、結果をリリースします。
関連論文リスト
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - The SIFo Benchmark: Investigating the Sequential Instruction Following Ability of Large Language Models [48.455388608863785]
本稿では,複数の命令を逐次的に追従するモデルの性能を評価するためのベンチマークを提案する。
我々のベンチマークは,4つのタスク(テキスト修正,質問応答,数学,セキュリティルール)を用いて,指示に従うことを評価する。
より最近のモデルでは、SIFoタスクにおいて、より古いモデルやより小さなモデルよりも大幅に優れており、ベンチマークの有効性が検証されている。
論文 参考訳(メタデータ) (2024-06-28T15:34:26Z) - Don't Half-listen: Capturing Key-part Information in Continual Instruction Tuning [13.535110749767451]
キーパート情報ゲイン(KPIG)に基づく新しい連続的命令チューニング手法を提案する。
本手法は,マスク部分の情報ゲインを計算し,データを動的に再生し,トレーニング対象を洗練させる。
実験により,本手法は観察タスクと保留タスクの両方において優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-03-15T06:54:20Z) - From Language Modeling to Instruction Following: Understanding the Behavior Shift in LLMs after Instruction Tuning [63.63840740526497]
そこで本研究では,本質的な変化に着目した事前学習モデルの調整方法について検討する。
次に、事前訓練されたモデルと命令調整されたモデルから導かれた説明を比較することで、命令チューニングの影響について研究する。
この結果から,指導指導の3つの重要な影響が明らかになった。
論文 参考訳(メタデータ) (2023-09-30T21:16:05Z) - Mitigating Hallucination in Large Multi-Modal Models via Robust Instruction Tuning [92.85265959892115]
本稿では,Large-scale Robust Visual (LRV)-Instructionという,大規模かつ多様な視覚的インストラクションチューニングデータセットを紹介する。
本データセットは, GPT4が生成した400kの視覚的命令からなり, 16の視覚・言語的タスクをオープンエンドの指示と回答でカバーする。
LMMが生み出す幻覚を効果的に測定するために,人間の専門家による視覚指導のチューニングを安定的に評価するためのGAVIE(GPT4-Assisted Visual Instruction Evaluation)を提案する。
論文 参考訳(メタデータ) (2023-06-26T10:26:33Z) - Did You Read the Instructions? Rethinking the Effectiveness of Task
Definitions in Instruction Learning [74.70157466822612]
教科学習におけるタスク定義の役割を体系的に研究する。
タスク出力を記述する内容を削除すると,モデルの性能が大幅に低下することがわかった。
本稿では,モデルのタスク命令の活用を支援するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2023-06-01T21:11:24Z) - Investigating the Effectiveness of Task-Agnostic Prefix Prompt for
Instruction Following [44.701091969256055]
本稿では,TAPP(Task-Agnostic Prefix Prompt)を入力にプリプションすることで,各種大規模言語モデル(LLM)の命令追従能力が向上することを示す。
我々は、ベースLLM(命令に従うように微調整されていない)と命令調整モデルの両方がTAPPの恩恵を受けており、平均で34.58%、12.26%の改善が得られた。
論文 参考訳(メタデータ) (2023-02-28T16:06:35Z) - Large Language Models Are Human-Level Prompt Engineers [31.98042013940282]
本稿では,自動命令生成と選択のための自動プロンプトエンジニアを提案する。
APEを駆使したプロンプトは、真理性や情報性に対するステアモデルに適用可能であることを示す。
論文 参考訳(メタデータ) (2022-11-03T15:43:03Z) - Finetuned Language Models Are Zero-Shot Learners [67.70352207685558]
命令チューニングは、目に見えないタスクにおけるゼロショット性能を向上することを示す。
137Bパラメータを事前訓練した言語モデルと、自然言語の命令テンプレートを介して言語化された60以上のNLPタスクにチューニングする。
FLANと呼ばれるこの命令調整モデルについて、未知のタスクタイプで評価する。
論文 参考訳(メタデータ) (2021-09-03T17:55:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。