論文の概要: Leveraging LLMs for Translating and Classifying Mental Health Data
- arxiv url: http://arxiv.org/abs/2410.12985v1
- Date: Wed, 16 Oct 2024 19:30:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:20:22.506444
- Title: Leveraging LLMs for Translating and Classifying Mental Health Data
- Title(参考訳): メンタルヘルスデータの翻訳・分類におけるLCMの活用
- Authors: Konstantinos Skianis, A. Seza Doğruöz, John Pavlopoulos,
- Abstract要約: 本研究は,ギリシャ語におけるうつ病の重症度の自動検出に焦点をあてる。
以上の結果から,GPT3.5-turboは英語における抑うつの重症度を同定するにはあまり成功せず,ギリシャ語でも多彩な性能を示した。
- 参考スコア(独自算出の注目度): 3.0382033111760585
- License:
- Abstract: Large language models (LLMs) are increasingly used in medical fields. In mental health support, the early identification of linguistic markers associated with mental health conditions can provide valuable support to mental health professionals, and reduce long waiting times for patients. Despite the benefits of LLMs for mental health support, there is limited research on their application in mental health systems for languages other than English. Our study addresses this gap by focusing on the detection of depression severity in Greek through user-generated posts which are automatically translated from English. Our results show that GPT3.5-turbo is not very successful in identifying the severity of depression in English, and it has a varying performance in Greek as well. Our study underscores the necessity for further research, especially in languages with less resources. Also, careful implementation is necessary to ensure that LLMs are used effectively in mental health platforms, and human supervision remains crucial to avoid misdiagnosis.
- Abstract(参考訳): 大きな言語モデル (LLMs) は医学分野でますます使われている。
メンタルヘルス支援において、メンタルヘルスの状況に関連する言語マーカーの早期同定は、メンタルヘルスの専門家に貴重な支援を提供し、患者の待ち時間を短縮することができる。
メンタルヘルス支援のためのLLMの利点にもかかわらず、英語以外の言語に対するメンタルヘルスシステムへの応用についての研究は限られている。
本研究は,ギリシャ語におけるうつ病の重症度の検出を,英語から自動的に翻訳されるユーザ生成投稿に焦点をあてることにより,このギャップに対処する。
以上の結果から,GPT3.5-turboは英語における抑うつの重症度を同定するにはあまり成功せず,ギリシャ語でも多彩な性能を示した。
我々の研究は、特に資源が少ない言語において、さらなる研究の必要性を浮き彫りにしている。
また、精神保健プラットフォームにおいてLSMを効果的に活用するためには、慎重に実施する必要がある。
関連論文リスト
- MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
メンタルヘルス障害は世界で最も深刻な病気の1つである。
プライバシーに関する懸念は、パーソナライズされた治療データのアクセシビリティを制限する。
MentalArenaは、言語モデルをトレーニングするためのセルフプレイフレームワークである。
論文 参考訳(メタデータ) (2024-10-09T13:06:40Z) - Severity Prediction in Mental Health: LLM-based Creation, Analysis,
Evaluation of a Novel Multilingual Dataset [3.4146360486107987]
大規模言語モデル(LLM)は、メンタルヘルス支援システムを含む様々な医療分野に統合されつつある。
本稿では、広く使われているメンタルヘルスデータセットを英語から6言語に翻訳した新しい多言語適応法を提案する。
このデータセットは、精神状態を検出し、複数の言語にわたる重症度を評価する上で、LLMのパフォーマンスを総合的に評価することを可能にする。
論文 参考訳(メタデータ) (2024-09-25T22:14:34Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
大規模言語モデル(LLM)を用いて、非構造的心理面接を、様々な精神科領域と人格領域にまたがる構造化された質問票に変換する。
得られた回答は、うつ病の標準化された精神医学的指標(PHQ-8)とPTSD(PCL-C)の予測に使用される特徴として符号化される。
論文 参考訳(メタデータ) (2024-06-09T09:03:11Z) - Large Language Model for Mental Health: A Systematic Review [2.9429776664692526]
大規模言語モデル(LLM)は、デジタルヘルスの潜在的な応用に対して大きな注目を集めている。
この体系的なレビューは、早期スクリーニング、デジタル介入、臨床応用におけるその強みと限界に焦点を当てている。
論文 参考訳(メタデータ) (2024-02-19T17:58:41Z) - On the Use of Metaphor Translation in Psychiatry [0.0]
フィギュラティブ言語翻訳は、公平な精神医学的ケアを提供するのに有用である。
本研究の目的は,精神医療の公平化に向けた機械翻訳の可能性を探ることである。
論文 参考訳(メタデータ) (2023-12-22T17:19:33Z) - Challenges of Large Language Models for Mental Health Counseling [4.604003661048267]
世界のメンタルヘルス危機は、精神疾患の急速な増加、限られた資源、治療を求める社会的便宜によって悪化している。
メンタルヘルス領域における大規模言語モデル(LLM)の適用は、提供された情報の正確性、有効性、信頼性に関する懸念を提起する。
本稿では, モデル幻覚, 解釈可能性, バイアス, プライバシ, 臨床効果など, 心理カウンセリングのためのLSMの開発に伴う課題について検討する。
論文 参考訳(メタデータ) (2023-11-23T08:56:41Z) - Rethinking Large Language Models in Mental Health Applications [42.21805311812548]
大規模言語モデル(LLM)は、メンタルヘルスにおいて貴重な資産となっている。
本稿では,精神保健分野におけるLSMの利用について考察する。
論文 参考訳(メタデータ) (2023-11-19T08:40:01Z) - ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences [51.66185471742271]
我々は中国医学領域向けに明示的に設計されたベンチマークLSMであるChiMed-GPTを提案する。
ChiMed-GPTは、事前訓練、SFT、RLHFを含む総合的な訓練体制を実施。
我々は,ChiMed-GPTを患者識別に関する態度尺度の実行を促すことによって,潜在的なバイアスを分析した。
論文 参考訳(メタデータ) (2023-11-10T12:25:32Z) - Inducing anxiety in large language models can induce bias [47.85323153767388]
我々は、確立された12の大規模言語モデル(LLM)に焦点を当て、精神医学でよく用いられる質問紙に答える。
以上の結果から,最新のLSMの6つが不安アンケートに強く反応し,人間に匹敵する不安スコアが得られた。
不安誘発は、LSMのスコアが不安アンケートに影響を及ぼすだけでなく、人種差別や老化などの偏見を測る以前に確立されたベンチマークにおいて、それらの行動に影響を及ぼす。
論文 参考訳(メタデータ) (2023-04-21T16:29:43Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
世界保健機関(WHO)によると、約4億5000万人が影響を受ける。
うつ病、不安症、双極性障害、ADHD、PTSDなどの精神疾患。
本研究では、Redditプラットフォーム上の非構造化ユーザデータを分析し、うつ病、不安、双極性障害、ADHD、PTSDの5つの一般的な精神疾患を分類する。
論文 参考訳(メタデータ) (2022-07-03T11:33:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。