論文の概要: Language Models as Semiotic Machines: Reconceptualizing AI Language Systems through Structuralist and Post-Structuralist Theories of Language
- arxiv url: http://arxiv.org/abs/2410.13065v1
- Date: Wed, 16 Oct 2024 21:45:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:22:06.035765
- Title: Language Models as Semiotic Machines: Reconceptualizing AI Language Systems through Structuralist and Post-Structuralist Theories of Language
- Title(参考訳): セミオティックマシンとしての言語モデル:構造主義者と後構造主義者による言語理論によるAI言語システムの再概念化
- Authors: Elad Vromen,
- Abstract要約: 本稿では,大規模言語モデル(LLM)を理解するための新しいフレームワークを提案する。
LLMは言語自体のモデルとして理解されるべきであり、ジャックの「書き方」(l'ecriture)の概念と一致している、と私は主張する。
私は、Sausure の Saussure 批判を LLM でモデル化されたオブジェクトとして位置づけ、機械の 'mind' を統計的近似として提供します。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper proposes a novel framework for understanding large language models (LLMs) by reconceptualizing them as semiotic machines rather than as imitations of human cognition. Drawing from structuralist and post-structuralist theories of language-specifically the works of Ferdinand de Saussure and Jacques Derrida-I argue that LLMs should be understood as models of language itself, aligning with Derrida's concept of 'writing' (l'ecriture). The paper is structured into three parts. First, I lay the theoretical groundwork by explaining how the word2vec embedding algorithm operates within Saussure's framework of language as a relational system of signs. Second, I apply Derrida's critique of Saussure to position 'writing' as the object modeled by LLMs, offering a view of the machine's 'mind' as a statistical approximation of sign behavior. Finally, the third section addresses how modern LLMs reflect post-structuralist notions of unfixed meaning, arguing that the "next token generation" mechanism effectively captures the dynamic nature of meaning. By reconceptualizing LLMs as semiotic machines rather than cognitive models, this framework provides an alternative lens through which to assess the strengths and limitations of LLMs, offering new avenues for future research.
- Abstract(参考訳): 本稿では,人間認知の模倣としてではなく,擬似機械として再認識することで,大規模言語モデル(LLM)を理解するための新しい枠組みを提案する。
構造主義的・ポスト構造主義的な言語理論から、特にフェルディナンド・ド・ソーセーとジャック・デリダ-私は、LLMは言語自体のモデルとして理解されるべきであり、デリダの「書き方」(l'ecriture)の概念と一致していると主張している。
その紙は3つの部分に分かれている。
まず,単語2vec埋め込みアルゴリズムが,記号のリレーショナルシステムとして,Sausureの言語フレームワーク内でどのように機能するかを説明することによって,理論的基礎を固める。
第二に、Derrida の Saussure 批判を LLM でモデル化されたオブジェクトとして位置づけ、機械の 'mind' を統計的近似として表す。
最後に、第3節では、現代のLLMが、非固定的意味というポスト構造主義的な概念を反映し、「次のトークン生成」機構が意味の動的な性質を効果的に捉えていると論じている。
認知モデルではなく、セミオティックマシンとしてLLMを再認識することで、このフレームワークはLLMの強度と限界を評価するための代替レンズを提供し、将来の研究に新たな道筋を提供する。
関連論文リスト
- Large Language Models are Interpretable Learners [53.56735770834617]
本稿では,Large Language Models(LLM)とシンボルプログラムの組み合わせによって,表現性と解釈可能性のギャップを埋めることができることを示す。
自然言語プロンプトを持つ事前訓練されたLLMは、生の入力を自然言語の概念に変換することができる解釈可能な膨大なモジュールセットを提供する。
LSPが学んだ知識は自然言語の記述と記号規則の組み合わせであり、人間(解釈可能)や他のLLMに容易に転送できる。
論文 参考訳(メタデータ) (2024-06-25T02:18:15Z) - Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL [78.80673954827773]
大きな言語モデル(LLM)は、言語理解を高め、解釈可能性を改善し、バイアスを減らすために構造化セマンティクスをキャプチャする上で重要な役割を果たす。
セマンティック・ロール・ラベルリング(SRL)を,構造化意味論を抽出するLLMの能力を探るための基本課題として用いることを提案する。
LLMは実際にセマンティック構造をキャプチャすることができ、スケールアップは常にポテンシャルを反映するわけではない。
エラーのかなりの重複は、LLMと訓練されていない人間の両方によって行われ、全てのエラーの約30%を占めることに私たちは驚いています。
論文 参考訳(メタデータ) (2024-05-10T11:44:05Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - A Hypothesis-Driven Framework for the Analysis of Self-Rationalising
Models [0.8702432681310401]
我々はベイジアンネットワークを用いて、タスクの解決方法に関する仮説を実装している。
結果のモデルはGPT-3.5と強い類似性は示さない。
今後の作業において、LCM決定をよりよく近似するフレームワークの可能性だけでなく、これの意味についても論じる。
論文 参考訳(メタデータ) (2024-02-07T12:26:12Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - Beyond Words: A Mathematical Framework for Interpreting Large Language
Models [8.534513717370434]
大規模言語モデル(LLM)は、自然言語テキストやその他の複雑な情報を生成し、理解することのできる強力なAIツールである。
我々は、幻覚、アライメント、自己検証、思考の連鎖推論など、LLM研究における重要な用語と概念を明確にするフレームワークであるHexを提案する。
我々は、生成AIシステムを構築する方法についての議論を進める上で、私たちの正式な定義と結果が不可欠であると主張する。
論文 参考訳(メタデータ) (2023-11-06T11:13:17Z) - Large Language Models: The Need for Nuance in Current Debates and a
Pragmatic Perspective on Understanding [1.3654846342364308]
LLM(Large Language Models)は、文法的に正しい、流動的なテキストを生成する能力において、非並列である。
本論文は,LLM能力の批判において再発する3点を批判的に評価する。
LLMにおける現実の理解と意図の問題に関する実践的な視点を概説する。
論文 参考訳(メタデータ) (2023-10-30T15:51:04Z) - Why Can Large Language Models Generate Correct Chain-of-Thoughts? [10.888196404348093]
自然言語生成に適した2階層階層型グラフィカルモデルを提案する。
我々は、LLM生成した思考の連鎖の可能性を測る魅力的な幾何学的収束率を確立する。
論文 参考訳(メタデータ) (2023-10-20T15:09:46Z) - The Quo Vadis of the Relationship between Language and Large Language
Models [3.10770247120758]
LLM(Large Language Models)は、LLMを言語科学モデルとして採用することを奨励している。
透明性に欠ける科学的モデルの導入によって引き起こされる最も重要な理論的および経験的リスクを特定します。
現在の開発段階において、LLMは言語に関する説明をほとんど提供していないと結論付けている。
論文 参考訳(メタデータ) (2023-10-17T10:54:24Z) - From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought [124.40905824051079]
言語インフォームド・シンキングのための計算フレームワークである「構成」を合理的に提案する。
我々は、自然言語から確率論的思考言語への文脈感応的なマッピングとして、言語の意味を定式化する。
LLMは、現実的に適切な言語的意味をキャプチャする文脈依存翻訳を生成することができることを示す。
認知的なモチベーションを持つシンボリックモジュールを統合するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2023-06-22T05:14:00Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
大規模言語モデル(LLM)は、近年、自然言語と機械学習コミュニティを興奮させています。
多くの成功を収めたアプリケーションにもかかわらず、そのようなコンテキスト内機能の基盤となるメカニズムはまだ不明である。
本研究では,学習した言語トークンのテクストセマンティクスが推論過程において最も重い処理を行うと仮定する。
論文 参考訳(メタデータ) (2023-05-24T07:33:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。