Exploring the Head Effect in Live Streaming Platforms: A Two-Sided Market and Welfare Analysis
- URL: http://arxiv.org/abs/2410.13090v1
- Date: Wed, 16 Oct 2024 23:30:42 GMT
- Title: Exploring the Head Effect in Live Streaming Platforms: A Two-Sided Market and Welfare Analysis
- Authors: Yukun Zhang,
- Abstract summary: This paper develops a theoretical framework to analyze live streaming platforms as two-sided markets connecting streamers and viewers.
It focuses on the "head effect" where a few top streamers attract most viewers due to strong network effects and platform policies like commission rates and traffic allocation algorithms.
- Score: 3.4039202831583903
- License:
- Abstract: This paper develops a theoretical framework to analyze live streaming platforms as two-sided markets connecting streamers and viewers, focusing on the "head effect" where a few top streamers attract most viewers due to strong network effects and platform policies like commission rates and traffic allocation algorithms. Using static and dynamic models, it examines how these factors lead to traffic concentration and winner-takes-all scenarios. The welfare implications are assessed, revealing that while such concentration may enhance consumer utility short-term, it can reduce content diversity and overall social welfare in the long run. The paper proposes policy interventions to adjust traffic allocation, promoting a more equitable distribution of viewers across streamers, and demonstrates through simulations that combining multiple policies can significantly reduce market concentration and enhance social welfare
Related papers
- FairStream: Fair Multimedia Streaming Benchmark for Reinforcement Learning Agents [9.722943742118234]
We propose a novel multi-agent environment that comprises multiple challenges of fair multimedia streaming.
We analyze approaches across five different traffic classes to gain detailed insights into the behavior of the considered agents.
arXiv Detail & Related papers (2024-10-28T13:51:03Z) - The Social Cost of Growth: Evaluating GMV-Centric and Welfare-Centric Strategies in Online Food Delivery Platforms [3.4039202831583903]
GMV strategies drive rapid short-term transaction growth but lead to uneven welfare distribution.
Welfare-centric strategies promote a more balanced and equitable distribution of benefits among consumers, restaurants, and delivery workers.
arXiv Detail & Related papers (2024-10-21T22:55:59Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSense is a framework that induces a belief-centered graph on top of an existent social network, along with graph-based propagation to capture social dynamics.
Our method surpasses existing state-of-the-art in experimental evaluations for both zero-shot and supervised settings.
arXiv Detail & Related papers (2023-10-20T06:17:02Z) - Improved Bayes Risk Can Yield Reduced Social Welfare Under Competition [99.7047087527422]
In this work, we demonstrate that competition can fundamentally alter the behavior of machine learning scaling trends.
We find many settings where improving data representation quality decreases the overall predictive accuracy across users.
At a conceptual level, our work suggests that favorable scaling trends for individual model-providers need not translate to downstream improvements in social welfare.
arXiv Detail & Related papers (2023-06-26T13:06:34Z) - SocialLight: Distributed Cooperation Learning towards Network-Wide
Traffic Signal Control [7.387226437589183]
SocialLight is a new multi-agent reinforcement learning method for traffic signal control.
It learns cooperative traffic control policies by estimating the individual marginal contribution of agents on their local neighborhood.
We benchmark our trained network against state-of-the-art traffic signal control methods on standard benchmarks in two traffic simulators.
arXiv Detail & Related papers (2023-04-20T12:41:25Z) - Channel-Dependent Population Transfer: A Framework for Analyzing Complex
Reaction Pathways [0.0]
We present an approach of analyzing the transport of a quantum particle in a non-trivially connected extended system.
We show the richness hidden behind the transport even for relatively simple systems.
arXiv Detail & Related papers (2023-01-30T07:44:54Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Contextual Bandits for Advertising Campaigns: A Diffusion-Model
Independent Approach (Extended Version) [73.59962178534361]
We study an influence problem in which little is assumed to be known about the diffusion network or about the model that determines how information may propagate.
In this setting, an explore-exploit approach could be used to learn the key underlying diffusion parameters, while running the campaign.
We describe and compare two methods of contextual multi-armed bandits, with upper-confidence bounds on the remaining potential of influencers.
arXiv Detail & Related papers (2022-01-13T22:06:10Z) - Network Inference from a Mixture of Diffusion Models for Fake News
Mitigation [12.229596498611837]
The dissemination of fake news intended to deceive people, influence public opinion and manipulate social outcomes has become a pressing problem on social media.
We focus on understanding and leveraging diffusion dynamics of false and legitimate contents in order to facilitate network interventions for fake news mitigation.
arXiv Detail & Related papers (2020-08-08T05:59:25Z) - Accelerating Deep Reinforcement Learning With the Aid of Partial Model:
Energy-Efficient Predictive Video Streaming [97.75330397207742]
Predictive power allocation is conceived for energy-efficient video streaming over mobile networks using deep reinforcement learning.
To handle the continuous state and action spaces, we resort to deep deterministic policy gradient (DDPG) algorithm.
Our simulation results show that the proposed policies converge to the optimal policy that is derived based on perfect large-scale channel prediction.
arXiv Detail & Related papers (2020-03-21T17:36:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.