A new framework for Marketing Mix Modeling: Addressing Channel Influence Bias and Cross-Channel Effects
- URL: http://arxiv.org/abs/2311.05587v6
- Date: Sun, 16 Mar 2025 10:01:34 GMT
- Title: A new framework for Marketing Mix Modeling: Addressing Channel Influence Bias and Cross-Channel Effects
- Authors: Javier Marin,
- Abstract summary: This research addresses two fundamental challenges in Marketing Mix Modeling: the tendency of models to over-attribute influence to high-investment channels and the difficulty in quantifying cross-channel effects.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research addresses two fundamental challenges in Marketing Mix Modeling: the tendency of models to over-attribute influence to high-investment channels and the difficulty in quantifying cross-channel effects. We propose integrating the Michaelis-Menten equation and Maxwell-Boltzmann kinetic theory into hierarchical Bayesian models to overcome these limitations. Our approach uses the Michaelis-Menten model to characterize shape effects with spending-independent parameters and Boltzmann-type equations to systematically quantify cross-channel dynamics. Experimental results show that this physics-inspired approach maintains predictive accuracy while providing superior analytical insights into channel effectiveness and interactions. The normalized Michaelis-Menten constant offers an investment-independent measure of channel efficacy, while the N-particle system simulation reveals previously ignored channel interdependencies, enabling more accurate attribution and informed resource allocation decisions.
Related papers
- Learning Time-Varying Quantum Lossy Channels [2.499907423888049]
We employ neural networks to classify, regress, and forecast the behavior of time-varying quantum channels.
The networks achieve at least 87% of accuracy in distinguishing between non-Markovian, Markovian, memoryless, compound, and deterministic channels.
arXiv Detail & Related papers (2025-04-17T10:15:47Z) - Hybrid Data-Driven SSM for Interpretable and Label-Free mmWave Channel Prediction [15.984639104292352]
This paper proposes a novel hybrid method that integrates a data-driven neural network into a conventional model-based workflow.
A novel unsupervised learning strategy is developed to train the embedded neural network solely with unlabeled data.
arXiv Detail & Related papers (2024-11-18T13:54:44Z) - Parametric model reduction of mean-field and stochastic systems via higher-order action matching [1.1509084774278489]
We learn models of population dynamics of physical systems that feature gradient and mean-field effects.
We show that our approach accurately predicts population dynamics over a wide range of parameters and outperforms state-of-the-art diffusion-based and flow-based modeling.
arXiv Detail & Related papers (2024-10-15T19:05:28Z) - SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion [59.96233305733875]
Time series forecasting plays a crucial role in various fields such as finance, traffic management, energy, and healthcare.
Several methods utilize mechanisms like attention or mixer to address this by capturing channel correlations.
This paper presents an efficient-based model, the Series-cOre Fused Time Series forecaster (SOFTS)
arXiv Detail & Related papers (2024-04-22T14:06:35Z) - From Similarity to Superiority: Channel Clustering for Time Series Forecasting [61.96777031937871]
We develop a novel and adaptable Channel Clustering Module ( CCM)
CCM dynamically groups channels characterized by intrinsic similarities and leverages cluster information instead of individual channel identities.
CCM can boost the performance of CI and CD models by an average margin of 2.4% and 7.2% on long-term and short-term forecasting, respectively.
arXiv Detail & Related papers (2024-03-31T02:46:27Z) - MCformer: Multivariate Time Series Forecasting with Mixed-Channels Transformer [8.329947472853029]
Channel Independence (CI) strategy treats all channels as a single channel, expanding the dataset.
Mixed Channels strategy combines the data expansion advantages of the CI strategy with the ability to counteract inter-channel correlation forgetting.
Model blends a specific number of channels, leveraging an attention mechanism to effectively capture inter-channel correlation information.
arXiv Detail & Related papers (2024-03-14T09:43:07Z) - Enhancing Multivariate Time Series Forecasting with Mutual
Information-driven Cross-Variable and Temporal Modeling [24.041263835195423]
We introduce the Cross-variable Decorrelation Aware feature Modeling (CDAM) for Channel-mixing approaches.
We also introduce the Temporal correlation Aware Modeling (TAM) to exploit temporal correlations, a step beyond conventional single-step forecasting methods.
Our novel framework significantly surpasses existing models, including those previously considered state-of-the-art, in comprehensive tests.
arXiv Detail & Related papers (2024-03-01T04:42:47Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Deep Learning-based Analysis of Basins of Attraction [49.812879456944984]
This research addresses the challenge of characterizing the complexity and unpredictability of basins within various dynamical systems.
The main focus is on demonstrating the efficiency of convolutional neural networks (CNNs) in this field.
arXiv Detail & Related papers (2023-09-27T15:41:12Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Probing a hybrid channel for the dynamics of non-local features [0.8363593384698137]
We introduce a hybrid channel that encompasses thermal, magnetic, and local components, each simultaneously endowed with characteristics that enhance and diminish quantum correlations.
Our findings reveal that the hybrid channel can be adeptly tailored to preserve quantum correlations, surpassing the capabilities of its individual components.
Notably, various parameters and quantum features, including non-Markovianity, exhibit distinct behaviors in the context of this hybrid channel.
arXiv Detail & Related papers (2023-01-26T04:11:14Z) - Combining physics-based and data-driven techniques for reliable hybrid
analysis and modeling using the corrective source term approach [0.0]
Digital twins, autonomous, and artificial intelligent systems require accurate, interpretable, computationally efficient, and generalizable models.
We show how a hybrid approach combining the best of physics-based modeling and data-driven modeling can result in models which can outperform them both.
arXiv Detail & Related papers (2022-06-07T17:10:58Z) - Learning Deep Implicit Fourier Neural Operators (IFNOs) with
Applications to Heterogeneous Material Modeling [3.9181541460605116]
We propose to use data-driven modeling to predict a material's response without using conventional models.
The material response is modeled by learning the implicit mappings between loading conditions and the resultant displacement and/or damage fields.
We demonstrate the performance of our proposed method for a number of examples, including hyperelastic, anisotropic and brittle materials.
arXiv Detail & Related papers (2022-03-15T19:08:13Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) learns successful equilibrium policies after a few interactions with the environment.
We demonstrate our approach experimentally on an autonomous driving simulation benchmark.
arXiv Detail & Related papers (2022-03-14T17:24:03Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
Several methods have proposed to integrate priors from classical mechanics into machine learning models.
We take a sober look at the current capabilities of these models.
We find that the use of continuous and time-reversible dynamics benefits models of all classes.
arXiv Detail & Related papers (2021-11-09T23:48:21Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Hybrid modeling of the human cardiovascular system using NeuralFMUs [0.0]
We show that the hybrid modeling process is more comfortable, needs less system knowledge and is less error-prone compared to modeling solely based on first principle.
The resulting hybrid model has improved in computation performance, compared to a pure first principle white-box model.
The considered use-case can serve as example for other modeling and simulation applications in and beyond the medical domain.
arXiv Detail & Related papers (2021-09-10T13:48:43Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
We study downlink (DL) channel estimation in a Massive multiple-input multiple-output (MIMO) system.
A common approach is to use the mean value as the estimate, motivated by channel hardening.
We propose two novel estimation methods.
arXiv Detail & Related papers (2021-09-06T13:42:32Z) - Evaluating Sensitivity to the Stick-Breaking Prior in Bayesian
Nonparametrics [85.31247588089686]
We show that variational Bayesian methods can yield sensitivities with respect to parametric and nonparametric aspects of Bayesian models.
We provide both theoretical and empirical support for our variational approach to Bayesian sensitivity analysis.
arXiv Detail & Related papers (2021-07-08T03:40:18Z) - Integrating Electrochemical Modeling with Machine Learning for
Lithium-Ion Batteries [0.0]
This paper presents a new approach to integrate a physics-based model with machine learning to achieve high-precision modeling for lithium-ion batteries (LiBs)
We propose two hybrid physics-machine learning models based on the approach, which blend a single particle model with thermal dynamics (SPMT) with a feedforward neural network (FNN) to perform physics-informed learning of a LiB's dynamic behavior.
arXiv Detail & Related papers (2021-03-22T04:53:38Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.