論文の概要: FAMSeC: A Few-shot-sample-based General AI-generated Image Detection Method
- arxiv url: http://arxiv.org/abs/2410.13156v1
- Date: Thu, 17 Oct 2024 02:21:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:19:49.082658
- Title: FAMSeC: A Few-shot-sample-based General AI-generated Image Detection Method
- Title(参考訳): FAMSeC: 汎用AI生成画像検出方式
- Authors: Juncong Xu, Yang Yang, Han Fang, Honggu Liu, Weiming Zhang,
- Abstract要約: 本稿では,LoRAをベースとしたForgery Awareness ModuleとSemantic特徴誘導型コントラスト学習戦略に基づく汎用AI生成画像検出手法であるFAMSeCを提案する。
実験によると、FAMSeCは最先端の手法より優れており、トレーニングサンプルの0.56%で分類精度が14.55%向上している。
- 参考スコア(独自算出の注目度): 26.08924851795572
- License:
- Abstract: The explosive growth of generative AI has saturated the internet with AI-generated images, raising security concerns and increasing the need for reliable detection methods. The primary requirement for such detection is generalizability, typically achieved by training on numerous fake images from various models. However, practical limitations, such as closed-source models and restricted access, often result in limited training samples. Therefore, training a general detector with few-shot samples is essential for modern detection mechanisms. To address this challenge, we propose FAMSeC, a general AI-generated image detection method based on LoRA-based Forgery Awareness Module and Semantic feature-guided Contrastive learning strategy. To effectively learn from limited samples and prevent overfitting, we developed a Forgery Awareness Module (FAM) based on LoRA, maintaining the generalization of pre-trained features. Additionally, to cooperate with FAM, we designed a Semantic feature-guided Contrastive learning strategy (SeC), making the FAM focus more on the differences between real/fake image than on the features of the samples themselves. Experiments show that FAMSeC outperforms state-of-the-art method, enhancing classification accuracy by 14.55% with just 0.56% of the training samples.
- Abstract(参考訳): 生成AIの爆発的な成長は、AI生成画像によってインターネットを飽和させ、セキュリティ上の懸念を高め、信頼性の高い検出方法の必要性を高めている。
このような検出の第一の要件は一般化可能性であり、典型的には様々なモデルから多数の偽画像のトレーニングによって達成される。
しかし、クローズドソースモデルや制限されたアクセスのような実用的な制限は、しばしば限られたトレーニングサンプルをもたらす。
したがって、現代の検出機構には、サンプル数が少ない一般的な検出器の訓練が不可欠である。
この課題に対処するために,LoRAをベースとしたForgery Awareness ModuleとSemantic特徴誘導型コントラスト学習戦略に基づく汎用AI生成画像検出手法であるFAMSeCを提案する。
限られたサンプルから効果的に学習し、オーバーフィッティングを防止するため、LoRAに基づくフォージェリー・アウェアネス・モジュール(FAM)を開発し、事前学習した特徴の一般化を維持した。
さらに,FAMと協調してセマンティックな特徴誘導型コントラスト学習戦略 (SeC) を設計し,実像と偽像の差に着目した。
実験によると、FAMSeCは最先端の手法より優れており、トレーニングサンプルの0.56%で分類精度が14.55%向上している。
関連論文リスト
- Effort: Efficient Orthogonal Modeling for Generalizable AI-Generated Image Detection [66.16595174895802]
既存のAI生成画像(AIGI)検出手法は、しばしば限定的な一般化性能に悩まされる。
本稿では、AIGI検出において、これまで見過ごされてきた重要な非対称性現象を同定する。
論文 参考訳(メタデータ) (2024-11-23T19:10:32Z) - Time Step Generating: A Universal Synthesized Deepfake Image Detector [0.4488895231267077]
汎用合成画像検出器 Time Step Generating (TSG) を提案する。
TSGは、事前訓練されたモデルの再構築能力、特定のデータセット、サンプリングアルゴリズムに依存していない。
我々は,提案したTSGを大規模GenImageベンチマークで検証し,精度と一般化性の両方において大幅な改善を実現した。
論文 参考訳(メタデータ) (2024-11-17T09:39:50Z) - Detecting AutoEncoder is Enough to Catch LDM Generated Images [0.0]
本稿では,自己エンコーダが導入したアーティファクトを識別することで,LDM(Latent Diffusion Models)によって生成された画像を検出する手法を提案する。
LDMオートエンコーダによって再構成された画像と実際の画像とを区別するように検出器を訓練することにより、直接トレーニングすることなく、生成された画像を検出することができる。
実験の結果,最小限の偽陽性で高い検出精度を示し,この手法は偽画像と戦うための有望なツールとなる。
論文 参考訳(メタデータ) (2024-11-10T12:17:32Z) - MFCLIP: Multi-modal Fine-grained CLIP for Generalizable Diffusion Face Forgery Detection [64.29452783056253]
フォトリアリスティック・フェイスジェネレーション手法の急速な発展は、社会やアカデミックにおいて大きな関心を集めている。
既存のアプローチは主に画像モダリティを用いて顔の偽造パターンをキャプチャするが、きめ細かいノイズやテキストのような他のモダリティは完全には探索されていない。
そこで本研究では,画像ノイズの多点にわたる包括的かつきめ細かなフォージェリートレースをマイニングする,MFCLIP(MF-modal Fine-fine-fine-fine-fine-fine CLIP)モデルを提案する。
論文 参考訳(メタデータ) (2024-09-15T13:08:59Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGIDは、堅牢なAI生成画像検出のためのトレーニング不要でモデルに依存しない方法である。
RIGIDは、既存のトレーニングベースおよびトレーニング不要な検出器を著しく上回っている。
論文 参考訳(メタデータ) (2024-05-30T14:49:54Z) - Mixture of Low-rank Experts for Transferable AI-Generated Image Detection [18.631006488565664]
生成モデルは、最小限の専門知識を持つ写真リアリスティック画像の飛躍的な飛躍を見せ、オンライン情報の真正性に対する懸念を喚起している。
本研究の目的は,多様なソースからの画像を識別できる,汎用的なAI生成画像検出器を開発することである。
事前学習された視覚言語モデルのゼロショット転送性に着想を得て、未知の領域を一般化するために、CLIP-ViTの非自明な視覚世界知識と記述的習熟度を活用することを目指す。
論文 参考訳(メタデータ) (2024-04-07T09:01:50Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
入力画像の複数の知覚的特徴を利用する新しいSR手法MPF-Netを提案する。
本稿では,MPFEモジュールを組み込んで,多様な知覚情報を抽出する手法を提案する。
また、モデルの学習能力を向上する対照的な正規化項(CR)も導入する。
論文 参考訳(メタデータ) (2023-05-26T07:35:49Z) - Self-similarity-based super-resolution of photoacoustic angiography from
hand-drawn doodles [9.646172419644088]
光音響血管造影(PAA)は、血管イメージをアンダーサンプル画像から復元し、疾患の診断を容易にする強力なツールである。
鍛造されたPAA画像で訓練した超高分解能PAA法を用いる新しい手法を提案する。
我々のアプローチは、視覚タスクのためのゼロショット学習ニューラルネットワークを探索する有望な可能性を示している。
論文 参考訳(メタデータ) (2023-05-02T02:40:47Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
我々は,対象地域を排除し,事前訓練の手順を改善する,新たな自己指導型アプローチを開発した。
予測モデルに対してエージェントを訓練することで、下流の分類タスクで抽出した意味的特徴を大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-03-25T19:05:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。