Cyber Attacks Prevention Towards Prosumer-based EV Charging Stations: An Edge-assisted Federated Prototype Knowledge Distillation Approach
- URL: http://arxiv.org/abs/2410.13260v2
- Date: Fri, 18 Oct 2024 07:26:24 GMT
- Title: Cyber Attacks Prevention Towards Prosumer-based EV Charging Stations: An Edge-assisted Federated Prototype Knowledge Distillation Approach
- Authors: Luyao Zou, Quang Hieu Vo, Kitae Kim, Huy Q. Le, Chu Myaet Thwal, Chaoning Zhang, Choong Seon Hong,
- Abstract summary: This paper covers two aspects: 1) cyber-attack detection on prosumers' network traffic (NT) data, and 2) cyber-attack intervention.
We propose an edge-assisted federated prototype knowledge distillation (E-FPKD) approach, where each client is deployed on a dedicated local edge server (DLES)
Experimental analysis demonstrates that the proposed E-FPKD can achieve the largest ODC on NSL-KDD, UNSW-NB15, and IoTID20 datasets.
- Score: 25.244719630000407
- License:
- Abstract: In this paper, cyber-attack prevention for the prosumer-based electric vehicle (EV) charging stations (EVCSs) is investigated, which covers two aspects: 1) cyber-attack detection on prosumers' network traffic (NT) data, and 2) cyber-attack intervention. To establish an effective prevention mechanism, several challenges need to be tackled, for instance, the NT data per prosumer may be non-independent and identically distributed (non-IID), and the boundary between benign and malicious traffic becomes blurred. To this end, we propose an edge-assisted federated prototype knowledge distillation (E-FPKD) approach, where each client is deployed on a dedicated local edge server (DLES) and can report its availability for joining the federated learning (FL) process. Prior to the E-FPKD approach, to enhance accuracy, the Pearson Correlation Coefficient is adopted for feature selection. Regarding the proposed E-FPKD approach, we integrate the knowledge distillation and prototype aggregation technique into FL to deal with the non-IID challenge. To address the boundary issue, instead of directly calculating the distance between benign and malicious traffic, we consider maximizing the overall detection correctness of all prosumers (ODC), which can mitigate the computational cost compared with the former way. After detection, a rule-based method will be triggered at each DLES for cyber-attack intervention. Experimental analysis demonstrates that the proposed E-FPKD can achieve the largest ODC on NSL-KDD, UNSW-NB15, and IoTID20 datasets in both binary and multi-class classification, compared with baselines. For instance, the ODC for IoTID20 obtained via the proposed method is separately 0.3782% and 4.4471% greater than FedProto and FedAU in multi-class classification.
Related papers
- Generative Edge Detection with Stable Diffusion [52.870631376660924]
Edge detection is typically viewed as a pixel-level classification problem mainly addressed by discriminative methods.
We propose a novel approach, named Generative Edge Detector (GED), by fully utilizing the potential of the pre-trained stable diffusion model.
We conduct extensive experiments on multiple datasets and achieve competitive performance.
arXiv Detail & Related papers (2024-10-04T01:52:23Z) - Secure Aggregation Meets Sparsification in Decentralized Learning [1.7010199949406575]
This paper introduces CESAR, a novel secure aggregation protocol for Decentralized Learning (DL)
CESAR provably defends against honest-but-curious adversaries and can be formally adapted to counteract collusion between them.
arXiv Detail & Related papers (2024-05-13T12:52:58Z) - Privacy-Preserving Distributed Learning for Residential Short-Term Load
Forecasting [11.185176107646956]
Power system load data can inadvertently reveal the daily routines of residential users, posing a risk to their property security.
We introduce a Markovian Switching-based distributed training framework, the convergence of which is substantiated through rigorous theoretical analysis.
Case studies employing real-world power system load data validate the efficacy of our proposed algorithm.
arXiv Detail & Related papers (2024-02-02T16:39:08Z) - PETDet: Proposal Enhancement for Two-Stage Fine-Grained Object Detection [26.843891792018447]
We present PETDet (Proposal Enhancement for Two-stage fine-grained object detection) to better handle the sub-tasks in two-stage FGOD methods.
An anchor-free Quality Oriented Proposal Network (QOPN) is proposed with dynamic label assignment and attention-based decomposition.
A novel Adaptive Recognition Loss (ARL) offers guidance for the R-CNN head to focus on high-quality proposals.
arXiv Detail & Related papers (2023-12-16T18:04:56Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
Federated edge learning (FEEL) enables privacy-preserving model training through periodic communication between edge devices and the server.
Unmanned Aerial Vehicle (UAV)mounted edge devices are particularly advantageous for FEEL due to their flexibility and mobility in efficient data collection.
arXiv Detail & Related papers (2023-06-05T16:01:33Z) - Illicit item detection in X-ray images for security applications [7.519872646378835]
Automated detection of contraband items in X-ray images can significantly increase public safety.
Modern computer vision algorithms relying on Deep Neural Networks (DNNs) have proven capable of undertaking this task.
This paper proposes a two-fold improvement of such algorithms for the X-ray analysis domain.
arXiv Detail & Related papers (2023-05-03T07:28:05Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Inter-Domain Fusion for Enhanced Intrusion Detection in Power Systems:
An Evidence Theoretic and Meta-Heuristic Approach [0.0]
False alerts due to/ compromised IDS in ICS networks can lead to severe economic and operational damage.
This work presents an approach for reducing false alerts in CPS power systems by dealing with uncertainty without prior distribution of alerts.
arXiv Detail & Related papers (2021-11-20T00:05:39Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - Higher Performance Visual Tracking with Dual-Modal Localization [106.91097443275035]
Visual Object Tracking (VOT) has synchronous needs for both robustness and accuracy.
We propose a dual-modal framework for target localization, consisting of robust localization suppressingors via ONR and the accurate localization attending to the target center precisely via OFC.
arXiv Detail & Related papers (2021-03-18T08:47:56Z) - Corner Proposal Network for Anchor-free, Two-stage Object Detection [174.59360147041673]
The goal of object detection is to determine the class and location of objects in an image.
This paper proposes a novel anchor-free, two-stage framework which first extracts a number of object proposals.
We demonstrate that these two stages are effective solutions for improving recall and precision.
arXiv Detail & Related papers (2020-07-27T19:04:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.