FRAG: Toward Federated Vector Database Management for Collaborative and Secure Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2410.13272v1
- Date: Thu, 17 Oct 2024 06:57:29 GMT
- Title: FRAG: Toward Federated Vector Database Management for Collaborative and Secure Retrieval-Augmented Generation
- Authors: Dongfang Zhao,
- Abstract summary: This paper introduces textitFederated Retrieval-Augmented Generation (FRAG), a novel database management paradigm tailored for the growing needs of retrieval-augmented generation (RAG) systems.
FRAG enables mutually-distrusted parties to collaboratively perform Approximate $k$-Nearest Neighbor (ANN) searches on encrypted query vectors and encrypted data stored in distributed vector databases.
- Score: 1.3824176915623292
- License:
- Abstract: This paper introduces \textit{Federated Retrieval-Augmented Generation (FRAG)}, a novel database management paradigm tailored for the growing needs of retrieval-augmented generation (RAG) systems, which are increasingly powered by large-language models (LLMs). FRAG enables mutually-distrusted parties to collaboratively perform Approximate $k$-Nearest Neighbor (ANN) searches on encrypted query vectors and encrypted data stored in distributed vector databases, all while ensuring that no party can gain any knowledge about the queries or data of others. Achieving this paradigm presents two key challenges: (i) ensuring strong security guarantees, such as Indistinguishability under Chosen-Plaintext Attack (IND-CPA), under practical assumptions (e.g., we avoid overly optimistic assumptions like non-collusion among parties); and (ii) maintaining performance overheads comparable to traditional, non-federated RAG systems. To address these challenges, FRAG employs a single-key homomorphic encryption protocol that simplifies key management across mutually-distrusted parties. Additionally, FRAG introduces a \textit{multiplicative caching} technique to efficiently encrypt floating-point numbers, significantly improving computational performance in large-scale federated environments. We provide a rigorous security proof using standard cryptographic reductions and demonstrate the practical scalability and efficiency of FRAG through extensive experiments on both benchmark and real-world datasets.
Related papers
- A Label-Free Heterophily-Guided Approach for Unsupervised Graph Fraud Detection [60.09453163562244]
We propose a Heterophily-guided Unsupervised Graph fraud dEtection approach (HUGE) for unsupervised GFD.
In the estimation module, we design a novel label-free heterophily metric called HALO, which captures the critical graph properties for GFD.
In the alignment-based fraud detection module, we develop a joint-GNN architecture with ranking loss and asymmetric alignment loss.
arXiv Detail & Related papers (2025-02-18T22:07:36Z) - Fast or Better? Balancing Accuracy and Cost in Retrieval-Augmented Generation with Flexible User Control [52.405085773954596]
Retrieval-Augmented Generation (RAG) has emerged as a powerful approach to mitigate large language model hallucinations.
Existing RAG frameworks often apply retrieval indiscriminately,leading to inefficiencies-over-retrieving.
We introduce a novel user-controllable RAG framework that enables dynamic adjustment of the accuracy-cost trade-off.
arXiv Detail & Related papers (2025-02-17T18:56:20Z) - TrustRAG: Enhancing Robustness and Trustworthiness in RAG [31.231916859341865]
TrustRAG is a framework that systematically filters compromised and irrelevant contents before they are retrieved for generation.
TrustRAG delivers substantial improvements in retrieval accuracy, efficiency, and attack resistance compared to existing approaches.
arXiv Detail & Related papers (2025-01-01T15:57:34Z) - Hades: Homomorphic Augmented Decryption for Efficient Symbol-comparison -- A Database's Perspective [1.3824176915623292]
This paper introduces HADES, a novel cryptographic framework that enables efficient and secure comparisons on encrypted data.
Based on the Ring Learning with Errors (RLWE) problem, HADES provides CPA-security and incorporates perturbation-aware encryption to mitigate frequency-analysis attacks.
arXiv Detail & Related papers (2024-12-28T02:47:14Z) - C-FedRAG: A Confidential Federated Retrieval-Augmented Generation System [7.385458207094507]
We introduce Confidential Computing (CC) techniques as a solution for secure Federated Retrieval Augmented Generation (FedRAG)
Our proposed Confidential FedRAG system (C-FedRAG) enables secure connection and scaling of a RAG across a decentralized network of data providers by ensuring context confidentiality.
arXiv Detail & Related papers (2024-12-17T18:42:21Z) - HOPE: Homomorphic Order-Preserving Encryption for Outsourced Databases -- A Stateless Approach [1.1701842638497677]
Homomorphic OPE (HOPE) is a new OPE scheme that eliminates client-side storage and avoids additional client-server interaction during query execution.
We provide a formal cryptographic analysis of HOPE, proving its security under the widely accepted IND-OCPA model.
arXiv Detail & Related papers (2024-11-26T00:38:46Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender systems (RSs) depend on categorical features, which ecoded by embedding vectors, resulting in excessively large embedding tables.
Despite the prosperity of lightweight embedding-based RSs, a wide diversity is seen in evaluation protocols.
This study investigates various LERS' performance, efficiency, and cross-task transferability via a thorough benchmarking process.
arXiv Detail & Related papers (2024-06-25T07:45:00Z) - ScionFL: Efficient and Robust Secure Quantized Aggregation [36.668162197302365]
We introduce ScionFL, the first secure aggregation framework for federated learning.
It operates efficiently on quantized inputs and simultaneously provides robustness against malicious clients.
We show that with no overhead for clients and moderate overhead for the server, we obtain comparable accuracy for standard FL benchmarks.
arXiv Detail & Related papers (2022-10-13T21:46:55Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z) - Meta Clustering Learning for Large-scale Unsupervised Person
Re-identification [124.54749810371986]
We propose a "small data for big task" paradigm dubbed Meta Clustering Learning (MCL)
MCL only pseudo-labels a subset of the entire unlabeled data via clustering to save computing for the first-phase training.
Our method significantly saves computational cost while achieving a comparable or even better performance compared to prior works.
arXiv Detail & Related papers (2021-11-19T04:10:18Z) - CREPO: An Open Repository to Benchmark Credal Network Algorithms [78.79752265884109]
Credal networks are imprecise probabilistic graphical models based on, so-called credal, sets of probability mass functions.
A Java library called CREMA has been recently released to model, process and query credal networks.
We present CREPO, an open repository of synthetic credal networks, provided together with the exact results of inference tasks on these models.
arXiv Detail & Related papers (2021-05-10T07:31:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.