Hybrid bundle-adjusting 3D Gaussians for view consistent rendering with pose optimization
- URL: http://arxiv.org/abs/2410.13280v1
- Date: Thu, 17 Oct 2024 07:13:00 GMT
- Title: Hybrid bundle-adjusting 3D Gaussians for view consistent rendering with pose optimization
- Authors: Yanan Guo, Ying Xie, Ying Chang, Benkui Zhang, Bo Jia, Lin Cao,
- Abstract summary: We introduce a hybrid bundle-adjusting 3D Gaussians model that enables view-consistent rendering with pose optimization.
This model jointly extract image-based and neural 3D representations to simultaneously generate view-consistent images and camera poses within forward-facing scenes.
- Score: 2.8990883469500286
- License:
- Abstract: Novel view synthesis has made significant progress in the field of 3D computer vision. However, the rendering of view-consistent novel views from imperfect camera poses remains challenging. In this paper, we introduce a hybrid bundle-adjusting 3D Gaussians model that enables view-consistent rendering with pose optimization. This model jointly extract image-based and neural 3D representations to simultaneously generate view-consistent images and camera poses within forward-facing scenes. The effective of our model is demonstrated through extensive experiments conducted on both real and synthetic datasets. These experiments clearly illustrate that our model can effectively optimize neural scene representations while simultaneously resolving significant camera pose misalignments. The source code is available at https://github.com/Bistu3DV/hybridBA.
Related papers
- NovelGS: Consistent Novel-view Denoising via Large Gaussian Reconstruction Model [57.92709692193132]
NovelGS is a diffusion model for Gaussian Splatting given sparse-view images.
We leverage the novel view denoising through a transformer-based network to generate 3D Gaussians.
arXiv Detail & Related papers (2024-11-25T07:57:17Z) - No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images [100.80376573969045]
NoPoSplat is a feed-forward model capable of reconstructing 3D scenes parameterized by 3D Gaussians from multi-view images.
Our model achieves real-time 3D Gaussian reconstruction during inference.
This work makes significant advances in pose-free generalizable 3D reconstruction and demonstrates its applicability to real-world scenarios.
arXiv Detail & Related papers (2024-10-31T17:58:22Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
We present a diffusion model approach based on Gaussian Splatting representation for 3D object reconstruction from a single view.
The model learns to generate 3D objects represented by sets of GS ellipsoids.
The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views.
arXiv Detail & Related papers (2024-07-05T03:43:08Z) - DreamSparse: Escaping from Plato's Cave with 2D Frozen Diffusion Model
Given Sparse Views [20.685453627120832]
Existing methods often struggle with producing high-quality results or necessitate per-object optimization in such few-view settings.
DreamSparse is capable of synthesizing high-quality novel views for both object and scene-level images.
arXiv Detail & Related papers (2023-06-06T05:26:26Z) - Novel View Synthesis with Diffusion Models [56.55571338854636]
We present 3DiM, a diffusion model for 3D novel view synthesis.
It is able to translate a single input view into consistent and sharp completions across many views.
3DiM can generate multiple views that are 3D consistent using a novel technique called conditioning.
arXiv Detail & Related papers (2022-10-06T16:59:56Z) - PixelSynth: Generating a 3D-Consistent Experience from a Single Image [30.64117903216323]
We present an approach that fuses 3D reasoning with autoregressive modeling to outpaint large view changes in a 3D-consistent manner.
We demonstrate considerable improvement in single image large-angle view synthesis results compared to a variety of methods and possible variants.
arXiv Detail & Related papers (2021-08-12T17:59:31Z) - CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields [67.76151996543588]
We learn a 3D- and camera-aware generative model which faithfully recovers not only the image but also the camera data distribution.
At test time, our model generates images with explicit control over the camera as well as the shape and appearance of the scene.
arXiv Detail & Related papers (2021-03-31T17:59:24Z) - Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition [67.9464567157846]
We propose an autoencoder for joint generation of realistic images from synthetic 3D models while simultaneously decomposing real images into their intrinsic shape and appearance properties.
Our experiments confirm that a joint treatment of rendering and decomposition is indeed beneficial and that our approach outperforms state-of-the-art image-to-image translation baselines both qualitatively and quantitatively.
arXiv Detail & Related papers (2020-06-29T12:53:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.