論文の概要: Retrieval-Augmented Personalization for Multimodal Large Language Models
- arxiv url: http://arxiv.org/abs/2410.13360v2
- Date: Mon, 18 Nov 2024 15:35:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:34:56.003014
- Title: Retrieval-Augmented Personalization for Multimodal Large Language Models
- Title(参考訳): マルチモーダル大言語モデルのための検索機能強化型パーソナライゼーション
- Authors: Haoran Hao, Jiaming Han, Changsheng Li, Yu-Feng Li, Xiangyu Yue,
- Abstract要約: 本稿では,MLLMのパーソナライズのためのRAP(Retrieval Augmented Personalization)フレームワークを紹介する。
RAPは、外部データベースを更新することで、リアルタイムの概念編集を可能にする。
RAP-MLLMは、追加の微調整なしで無限の視覚概念に一般化することができる。
- 参考スコア(独自算出の注目度): 53.304699445700926
- License:
- Abstract: The development of large language models (LLMs) has significantly enhanced the capabilities of multimodal LLMs (MLLMs) as general assistants. However, lack of user-specific knowledge still restricts their application in human's daily life. In this paper, we introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs' personalization. Starting from a general MLLM, we turn it into a personalized assistant in three steps. (a) Remember: We design a key-value database to store user-related information, e.g., user's name, avatar and other attributes. (b) Retrieve: When the user initiates a conversation, RAP will retrieve relevant information from the database using a multimodal retriever. (c) Generate: The input query and retrieved concepts' information are fed into MLLMs to generate personalized, knowledge-augmented responses. Unlike previous methods, RAP allows real-time concept editing via updating the external database. To further improve generation quality and alignment with user-specific information, we design a pipeline for data collection and create a specialized dataset for personalized training of MLLMs. Based on the dataset, we train a series of MLLMs as personalized multimodal assistants. By pretraining on large-scale dataset, RAP-MLLMs can generalize to infinite visual concepts without additional finetuning. Our models demonstrate outstanding flexibility and generation quality across a variety of tasks, such as personalized image captioning, question answering and visual recognition. The code, data and models are available at https://github.com/Hoar012/RAP-MLLM.
- Abstract(参考訳): 大規模言語モデル(LLM)の開発は、汎用アシスタントとしてのマルチモーダルLLM(MLLM)の機能を大幅に強化した。
しかし、ユーザ固有の知識の欠如は、人間の日常生活における応用を制限している。
本稿では,MLLMのパーソナライズのための検索機能拡張パーソナライズ(RAP)フレームワークについて紹介する。
一般的なMLLMから始まり、3つのステップでパーソナライズされたアシスタントにします。
例えば、ユーザ名、アバター、その他の属性など、ユーザ関連の情報を格納するためのキーバリューデータベースを設計します。
b)検索:ユーザが会話を開始すると、RAPはマルチモーダル検索器を使用してデータベースから関連情報を検索する。
(c) 生成: 入力クエリと検索された概念の情報はMLLMに入力され、パーソナライズされた知識強化された応答を生成する。
従来の方法とは異なり、RAPは外部データベースを更新することでリアルタイムの概念編集を可能にする。
データ収集のためのパイプラインを設計し、MLLMのパーソナライズされたトレーニングのための特別なデータセットを作成する。
データセットに基づいて、パーソナライズされたマルチモーダルアシスタントとして一連のMLLMをトレーニングする。
大規模データセットを事前トレーニングすることにより、RAP-MLLMは、追加の微調整なしで無限の視覚概念に一般化することができる。
我々のモデルは、パーソナライズされた画像キャプション、質問応答、視覚認識など、様々なタスクにおいて優れた柔軟性と生成品質を示す。
コード、データ、モデルはhttps://github.com/Hoar012/RAP-MLLMで公開されている。
関連論文リスト
- SocialGPT: Prompting LLMs for Social Relation Reasoning via Greedy Segment Optimization [70.11167263638562]
社会的関係推論は、友人、配偶者、同僚などの関係カテゴリを画像から識別することを目的としている。
まず、VFM(Vision Foundation Models)の知覚能力と、モジュラーフレームワーク内でのLLM(Large Language Models)の推論能力を組み合わせた、シンプルだが巧妙な名前のフレームワークを提示する。
論文 参考訳(メタデータ) (2024-10-28T18:10:26Z) - PersonalLLM: Tailoring LLMs to Individual Preferences [11.717169516971856]
我々は、特定のユーザに対して最大限のメリットを提供するためにLLMを適用することに焦点を当てた、PersonalLLMという公開ベンチマークを提示する。
我々は、ユーザーが不均一な潜伏傾向を示すことを期待する高品質な回答と組み合わせたオープンエンドプロンプトをキュレートする。
私たちのデータセットと生成された個人性は、パーソナライズアルゴリズムを開発するための革新的なテストベッドを提供します。
論文 参考訳(メタデータ) (2024-09-30T13:55:42Z) - LLMs + Persona-Plug = Personalized LLMs [41.60364110693824]
パーソナライゼーションは多くの言語タスクやアプリケーションにおいて重要な役割を担っている。
これにより、大きな言語モデル(LLM)を適用して、ユーザの好みに合わせてカスタマイズされたアウトプットを生成する、さまざまなパーソナライズされたアプローチが開発された。
そこで我々は,LLMモデルを提案する。軽量なプラグインユーザ埋め込みモジュールを用いて,過去の状況をすべてモデル化し,個人毎のユーザ固有の埋め込みを構築する。
論文 参考訳(メタデータ) (2024-09-18T11:54:45Z) - Relational Database Augmented Large Language Model [59.38841050766026]
大規模言語モデル(LLM)は多くの自然言語処理(NLP)タスクに優れる。
彼らは、トレーニングや教師付き微調整プロセスを通じてのみ、新しい知識を取り入れることができる。
この正確で最新のプライベート情報は、通常リレーショナルデータベースに格納される。
論文 参考訳(メタデータ) (2024-07-21T06:19:10Z) - Generative Cross-Modal Retrieval: Memorizing Images in Multimodal
Language Models for Retrieval and Beyond [99.73306923465424]
画像表現にユニークな識別子文字列を割り当てる生成的クロスモーダル検索フレームワークを提案する。
MLLMのイメージを記憶することで,従来の差別的アプローチとは異なる,クロスモーダル検索の新しいパラダイムを導入する。
論文 参考訳(メタデータ) (2024-02-16T16:31:46Z) - InfMLLM: A Unified Framework for Visual-Language Tasks [44.29407348046122]
マルチモーダルな大言語モデル (MLLM) が注目されている。
この作業は、LLMがより視覚的な言語に関連したタスクに取り組むことを可能にすることを目的としている。
InfMLLMは、最先端(SOTA)パフォーマンスまたは最近のMLLMに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-12T09:58:16Z) - Integrating Summarization and Retrieval for Enhanced Personalization via
Large Language Models [11.950478880423733]
パーソナライゼーションは自然言語処理(NLP)システムにおけるユーザエクスペリエンスにおいて重要な要素である。
LLM(Large Language Models)の出現によって、重要な疑問は、これらのモデルを使ってユーザエクスペリエンスをよりパーソナライズする方法である。
LLMが生成するタスク対応ユーザ要約を用いた,新しい要約型パーソナライゼーションを提案する。
論文 参考訳(メタデータ) (2023-10-30T23:40:41Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z) - Augmented Large Language Models with Parametric Knowledge Guiding [72.71468058502228]
大規模言語モデル(LLM)は、言語理解と生成能力に優れた自然言語処理(NLP)を備えています。
それらのパフォーマンスは、関連するデータへの限られた露出のために専門的な知識を必要とするドメイン固有のタスクに最適であるかもしれない。
本稿では,LLMに関連知識にアクセスするための知識誘導モジュールを組み込んだ新しいPKGフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-08T15:05:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。