論文の概要: Integrating Summarization and Retrieval for Enhanced Personalization via
Large Language Models
- arxiv url: http://arxiv.org/abs/2310.20081v1
- Date: Mon, 30 Oct 2023 23:40:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 17:13:52.578797
- Title: Integrating Summarization and Retrieval for Enhanced Personalization via
Large Language Models
- Title(参考訳): 大規模言語モデルによるパーソナライゼーション向上のための要約と検索の統合
- Authors: Chris Richardson, Yao Zhang, Kellen Gillespie, Sudipta Kar, Arshdeep
Singh, Zeynab Raeesy, Omar Zia Khan, Abhinav Sethy
- Abstract要約: パーソナライゼーションは自然言語処理(NLP)システムにおけるユーザエクスペリエンスにおいて重要な要素である。
LLM(Large Language Models)の出現によって、重要な疑問は、これらのモデルを使ってユーザエクスペリエンスをよりパーソナライズする方法である。
LLMが生成するタスク対応ユーザ要約を用いた,新しい要約型パーソナライゼーションを提案する。
- 参考スコア(独自算出の注目度): 11.950478880423733
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Personalization, the ability to tailor a system to individual users, is an
essential factor in user experience with natural language processing (NLP)
systems. With the emergence of Large Language Models (LLMs), a key question is
how to leverage these models to better personalize user experiences. To
personalize a language model's output, a straightforward approach is to
incorporate past user data into the language model prompt, but this approach
can result in lengthy inputs exceeding limitations on input length and
incurring latency and cost issues. Existing approaches tackle such challenges
by selectively extracting relevant user data (i.e. selective retrieval) to
construct a prompt for downstream tasks. However, retrieval-based methods are
limited by potential information loss, lack of more profound user
understanding, and cold-start challenges. To overcome these limitations, we
propose a novel summary-augmented approach by extending retrieval-augmented
personalization with task-aware user summaries generated by LLMs. The summaries
can be generated and stored offline, enabling real-world systems with runtime
constraints like voice assistants to leverage the power of LLMs. Experiments
show our method with 75% less of retrieved user data is on-par or outperforms
retrieval augmentation on most tasks in the LaMP personalization benchmark. We
demonstrate that offline summarization via LLMs and runtime retrieval enables
better performance for personalization on a range of tasks under practical
constraints.
- Abstract(参考訳): パーソナライゼーション(パーソナライゼーション)は、自然言語処理(NLP)システムにおけるユーザエクスペリエンスにおいて重要な要素である。
LLM(Large Language Models)の出現によって、重要な疑問は、これらのモデルを使ってユーザーエクスペリエンスをよりパーソナライズする方法である。
言語モデルの出力をパーソナライズするには、過去のユーザデータを言語モデルプロンプトに組み込むことが簡単なアプローチであるが、このアプローチは入力長の制限を超える長い入力と遅延やコストの問題を引き起こす可能性がある。
既存のアプローチは、ダウンストリームタスクのプロンプトを構築するために、関連するユーザデータ(選択検索)を選択的に抽出することで、このような課題に対処する。
しかし、検索ベースの方法は潜在的な情報損失、より深いユーザー理解の欠如、コールドスタートの課題によって制限される。
これらの制約を克服するために,llmsによって生成されたタスク対応ユーザ要約を用いて,検索によるパーソナライズを拡張した新しい要約手法を提案する。
要約はオフラインで生成および保存でき、音声アシスタントのような実行時の制約のある実世界のシステムがllmのパワーを活用できる。
LaMPパーソナライゼーションベンチマークのほとんどのタスクにおいて,検索したユーザデータの75%削減がオンパーまたはオーバーフォームであることを示す実験を行った。
LLMによるオフライン要約と実行時検索により,現実的な制約下でのタスクのパーソナライズ性能が向上することが実証された。
関連論文リスト
- LIBER: Lifelong User Behavior Modeling Based on Large Language Models [42.045535303737694]
大規模言語モデルに基づく生涯ユーザ行動モデリング(LIBER)を提案する。
LIBERはHuaweiの音楽レコメンデーションサービスにデプロイされ、ユーザーの再生回数と再生時間の3.01%と7.69%を大幅に改善した。
論文 参考訳(メタデータ) (2024-11-22T03:43:41Z) - Retrieval-Augmented Personalization for Multimodal Large Language Models [53.304699445700926]
本稿では,MLLMのパーソナライズのためのRAP(Retrieval Augmented Personalization)フレームワークを紹介する。
RAPは、外部データベースを更新することで、リアルタイムの概念編集を可能にする。
RAP-MLLMは、追加の微調整なしで無限の視覚概念に一般化することができる。
論文 参考訳(メタデータ) (2024-10-17T09:10:26Z) - LLMs + Persona-Plug = Personalized LLMs [41.60364110693824]
パーソナライゼーションは多くの言語タスクやアプリケーションにおいて重要な役割を担っている。
これにより、大きな言語モデル(LLM)を適用して、ユーザの好みに合わせてカスタマイズされたアウトプットを生成する、さまざまなパーソナライズされたアプローチが開発された。
そこで我々は,LLMモデルを提案する。軽量なプラグインユーザ埋め込みモジュールを用いて,過去の状況をすべてモデル化し,個人毎のユーザ固有の埋め込みを構築する。
論文 参考訳(メタデータ) (2024-09-18T11:54:45Z) - RLPF: Reinforcement Learning from Prediction Feedback for User Summarization with LLMs [25.034187557580704]
本稿では,RLPF(Reinforcement Learning from Prediction Feedback)を導入し,簡潔で可読なユーザ要約を生成する。
RLPFは、ダウンストリームタスクに最適化されたユーザサマリーを生成するために、既存のLarge Language Models(LLM)を微調整する。
実験による評価は,外因性ダウンストリームタスクユーティリティと内因性要約品質の両面で有意な改善を示した。
論文 参考訳(メタデータ) (2024-09-06T17:30:45Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
クエリ依存型プロンプト最適化(QPO)を導入し、入力クエリに合わせて最適なプロンプトを生成するために、小さな事前訓練された言語モデルを反復的に微調整する。
我々は、オープンソースのタスクに様々なプロンプトをベンチマークする副産物として、すでに大量に存在するオフラインのプロンプトデータから洞察を得る。
様々なLLMスケールと多様なNLPおよび数学タスクの実験は、ゼロショットと少数ショットの両方のシナリオにおいて、我々の手法の有効性とコスト効率を実証している。
論文 参考訳(メタデータ) (2024-08-20T03:06:48Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Doing Personal LAPS: LLM-Augmented Dialogue Construction for Personalized Multi-Session Conversational Search [9.243535345193711]
提案手法は,大規模言語モデルを用いて,個人化された対話を生成するために,一人の人間労働者を誘導する。
LAPSは大規模、人書き、マルチセッション、マルチドメインの会話を収集できる。
その結果,抽出された嗜好を用いて明示的に生成した応答は,ユーザの実際の嗜好と一致していることがわかった。
論文 参考訳(メタデータ) (2024-05-06T13:53:03Z) - Persona-DB: Efficient Large Language Model Personalization for Response Prediction with Collaborative Data Refinement [79.2400720115588]
本稿では,タスクコンテキスト間の一般化を改善するための階層的な構築プロセスからなる,シンプルで効果的なフレームワークであるPersona-DBを紹介する。
応答予測の評価において,Persona-DB は精度を著しく低減した検索サイズで維持する上で,より優れたコンテキスト効率を示す。
我々の実験は、ユーザーが極めて少ないデータを持つ場合、コールドスタートシナリオで10%以上の顕著な改善が示されていることも示している。
論文 参考訳(メタデータ) (2024-02-16T20:20:43Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
複数のタスク入力を処理するために,LLMのコンテキスト内学習機能を活用したOverPromptを提案する。
本実験により,OverPromptはタスク性能を著しく損なうことなく,コスト効率の良いゼロショット分類を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-05-24T10:08:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。