Learning Counterfactual Distributions via Kernel Nearest Neighbors
- URL: http://arxiv.org/abs/2410.13381v1
- Date: Thu, 17 Oct 2024 09:36:01 GMT
- Title: Learning Counterfactual Distributions via Kernel Nearest Neighbors
- Authors: Kyuseong Choi, Jacob Feitelberg, Anish Agarwal, Raaz Dwivedi,
- Abstract summary: We introduce a kernel based distributional generalization of nearest neighbors to estimate the underlying distributions.
We demonstrate that our nearest neighbors approach is robust to heteroscedastic noise, provided we have access to two or more measurements.
- Score: 8.971989179518216
- License:
- Abstract: Consider a setting with multiple units (e.g., individuals, cohorts, geographic locations) and outcomes (e.g., treatments, times, items), where the goal is to learn a multivariate distribution for each unit-outcome entry, such as the distribution of a user's weekly spend and engagement under a specific mobile app version. A common challenge is the prevalence of missing not at random data, where observations are available only for certain unit-outcome combinations and the observation availability can be correlated with the properties of distributions themselves, i.e., there is unobserved confounding. An additional challenge is that for any observed unit-outcome entry, we only have a finite number of samples from the underlying distribution. We tackle these two challenges by casting the problem into a novel distributional matrix completion framework and introduce a kernel based distributional generalization of nearest neighbors to estimate the underlying distributions. By leveraging maximum mean discrepancies and a suitable factor model on the kernel mean embeddings of the underlying distributions, we establish consistent recovery of the underlying distributions even when data is missing not at random and positivity constraints are violated. Furthermore, we demonstrate that our nearest neighbors approach is robust to heteroscedastic noise, provided we have access to two or more measurements for the observed unit-outcome entries, a robustness not present in prior works on nearest neighbors with single measurements.
Related papers
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Distributional Matrix Completion via Nearest Neighbors in the Wasserstein Space [8.971989179518216]
Given a sparsely observed matrix of empirical distributions, we seek to impute the true distributions associated with both observed and unobserved matrix entries.
We utilize tools from optimal transport to generalize the nearest neighbors method to the distributional setting.
arXiv Detail & Related papers (2024-10-17T00:50:17Z) - Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
Longtailed distributions frequently emerge in real-world data, where a large number of minority categories contain a limited number of samples.
Recent investigations have revealed that supervised contrastive learning exhibits promising potential in alleviating the data imbalance.
We propose a novel probabilistic contrastive (ProCo) learning algorithm that estimates the data distribution of the samples from each class in the feature space.
arXiv Detail & Related papers (2024-03-11T13:44:49Z) - Statistical Inference Under Constrained Selection Bias [20.862583584531322]
We propose a framework that enables statistical inference in the presence of selection bias.
The output is high-probability bounds on the value of an estimand for the target distribution.
We analyze the computational and statistical properties of methods to estimate these bounds and show that our method can produce informative bounds on a variety of simulated and semisynthetic tasks.
arXiv Detail & Related papers (2023-06-05T23:05:26Z) - Beyond the Best: Estimating Distribution Functionals in Infinite-Armed
Bandits [40.71199236098642]
In the infinite-armed bandit problem, each arm's average reward is sampled from an unknown distribution.
We consider a general class of distribution functionals beyond the maximum, and propose unified meta algorithms for both the offline and online settings.
arXiv Detail & Related papers (2022-11-01T18:20:10Z) - Cooperative Distribution Alignment via JSD Upper Bound [7.071749623370137]
Unsupervised distribution alignment estimates a transformation that maps two or more source distributions to a shared aligned distribution.
This task has many applications including generative modeling, unsupervised domain adaptation, and socially aware learning.
We propose to unify and generalize previous flow-based approaches under a single non-adversarial framework.
arXiv Detail & Related papers (2022-07-05T20:09:03Z) - Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
We provide a framework for designing Generative Adversarial Networks (GANs) to solve high dimensional robust statistics problems.
Our work extend these to robust mean estimation, second moment estimation, and robust linear regression.
In terms of techniques, our proposed GAN losses can be viewed as a smoothed and generalized Kolmogorov-Smirnov distance.
arXiv Detail & Related papers (2022-02-02T20:11:33Z) - Robust Learning of Optimal Auctions [84.13356290199603]
We study the problem of learning revenue-optimal multi-bidder auctions from samples when the samples of bidders' valuations can be adversarially corrupted or drawn from distributions that are adversarially perturbed.
We propose new algorithms that can learn a mechanism whose revenue is nearly optimal simultaneously for all true distributions'' that are $alpha$-close to the original distribution in Kolmogorov-Smirnov distance.
arXiv Detail & Related papers (2021-07-13T17:37:21Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
We connect domain adaptation and predictive uncertainty literature to predict model accuracy on challenging unseen distributions.
We find that the difference of confidences (DoC) of a classifier's predictions successfully estimates the classifier's performance change over a variety of shifts.
We specifically investigate the distinction between synthetic and natural distribution shifts and observe that despite its simplicity DoC consistently outperforms other quantifications of distributional difference.
arXiv Detail & Related papers (2021-07-07T15:50:18Z) - Global Distance-distributions Separation for Unsupervised Person
Re-identification [93.39253443415392]
Existing unsupervised ReID approaches often fail in correctly identifying the positive samples and negative samples through the distance-based matching/ranking.
We introduce a global distance-distributions separation constraint over the two distributions to encourage the clear separation of positive and negative samples from a global view.
We show that our method leads to significant improvement over the baselines and achieves the state-of-the-art performance.
arXiv Detail & Related papers (2020-06-01T07:05:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.