論文の概要: Generative Adversarial Synthesis of Radar Point Cloud Scenes
- arxiv url: http://arxiv.org/abs/2410.13526v1
- Date: Thu, 17 Oct 2024 13:14:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:20:34.141144
- Title: Generative Adversarial Synthesis of Radar Point Cloud Scenes
- Title(参考訳): レーダ点雲シーンの生成的逆合成
- Authors: Muhammad Saad Nawaz, Thomas Dallmann, Torsten Schoen, Dirk Heberling,
- Abstract要約: 本稿では、実際のデータセット取得とシミュレーションに基づくアプローチの代替として、GANを用いたレーダシーン合成を導入する。
我々は、PointNet++ベースのGANモデルをトレーニングし、現実的なレーダポイントクラウドシーンを生成するとともに、バイナリ分類器を使用して、実シーンのテストセットに対して、このモデルを用いて生成されたシーンのパフォーマンスを評価する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: For the validation and verification of automotive radars, datasets of realistic traffic scenarios are required, which, how ever, are laborious to acquire. In this paper, we introduce radar scene synthesis using GANs as an alternative to the real dataset acquisition and simulation-based approaches. We train a PointNet++ based GAN model to generate realistic radar point cloud scenes and use a binary classifier to evaluate the performance of scenes generated using this model against a test set of real scenes. We demonstrate that our GAN model achieves similar performance (~87%) to the real scenes test set.
- Abstract(参考訳): 自動車レーダーの検証と検証には、現実的な交通シナリオのデータセットが必要である。
本稿では,実際のデータセット取得とシミュレーションに基づくアプローチの代替として,GANを用いたレーダシーン合成を提案する。
我々は、PointNet++ベースのGANモデルをトレーニングして、現実的なレーダポイントクラウドシーンを生成するとともに、バイナリ分類器を使用して、実シーンのテストセットに対して、このモデルを用いて生成されたシーンのパフォーマンスを評価する。
GANモデルが実際のシーンテストセットと同じような性能(約87%)を達成することを実証する。
関連論文リスト
- CERES: Critical-Event Reconstruction via Temporal Scene Graph Completion [7.542220697870245]
本稿では,実世界のデータに基づくシミュレーションにおけるオンデマンドシナリオ生成手法を提案する。
実世界のデータセットから得られたシナリオをシミュレーションに統合することにより、テストの妥当性と妥当性を高める。
論文 参考訳(メタデータ) (2024-10-17T13:02:06Z) - XLD: A Cross-Lane Dataset for Benchmarking Novel Driving View Synthesis [84.23233209017192]
本稿では,自律走行シミュレーションに特化して設計された新しい駆動ビュー合成データセットとベンチマークを提案する。
データセットには、トレーニング軌跡から1-4mずれて取得した画像のテストが含まれているため、ユニークなものだ。
我々は、フロントオンリーおよびマルチカメラ設定下で、既存のNVSアプローチを評価するための最初の現実的なベンチマークを確立する。
論文 参考訳(メタデータ) (2024-06-26T14:00:21Z) - RASPNet: A Benchmark Dataset for Radar Adaptive Signal Processing Applications [20.589332431911842]
RASPNetと呼ばれるこのデータセットは、アメリカ合衆国全土の様々な地形や土地タイプにまたがる100の現実的なシナリオで構成されている。
RASPNetは、適応レーダー処理技術の評価を標準化する大規模で現実的なデータセットの可用性において、大きなギャップを埋めようとしている。
論文 参考訳(メタデータ) (2024-06-14T00:07:52Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
リアルLiDARセンサのデータ駆動シミュレーションのためのパイプラインを提案する。
本モデルでは, 透明表面上の落下点などの現実的な効果を符号化できることが示される。
我々は2つの異なるLiDARセンサのモデルを学習し、それに従ってシミュレーションされたLiDARデータを改善する。
論文 参考訳(メタデータ) (2022-09-22T13:12:54Z) - CARLA-GeAR: a Dataset Generator for a Systematic Evaluation of
Adversarial Robustness of Vision Models [61.68061613161187]
本稿では,合成データセットの自動生成ツールであるCARLA-GeARについて述べる。
このツールは、Python APIを使用して、CARLAシミュレータ上に構築されており、自律運転のコンテキストにおいて、いくつかのビジョンタスク用のデータセットを生成することができる。
本稿では,CARLA-GeARで生成されたデータセットが,現実世界の敵防衛のベンチマークとして今後どのように利用されるかを示す。
論文 参考訳(メタデータ) (2022-06-09T09:17:38Z) - Toward Data-Driven STAP Radar [23.333816677794115]
我々は、時空間適応処理(STAP)レーダーに対するデータ駆動アプローチを特徴付ける。
所定領域に可変強度のターゲットをランダムに配置することにより、受信レーダ信号の豊富なサンプルデータセットを生成する。
この領域内の各データサンプルに対して、ビームフォーマの出力パワーのレンジ、方位、および上昇のヒートマップテンソルを生成する。
空中に浮かぶシナリオでは、動くレーダーは、ビデオに似た、これらのタイムインデクシングされたイメージスタックのシーケンスを生成する。
論文 参考訳(メタデータ) (2022-01-26T02:28:13Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - DriveGAN: Towards a Controllable High-Quality Neural Simulation [147.6822288981004]
DriveGANと呼ばれる新しい高品質のニューラルシミュレータを紹介します。
DriveGANは、異なるコンポーネントを監督なしで切り離すことによって制御性を達成する。
実世界の運転データ160時間を含む複数のデータセットでdriveganをトレーニングします。
論文 参考訳(メタデータ) (2021-04-30T15:30:05Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
ドメイン適応プロセス中に関心のある小さなオブジェクトの情報を保存するために,事前の意味分類を用いたサイクガンに基づくbevドメイン適応法を提案する。
生成したBEVの品質は,KITTI 3D Object Detection Benchmarkの最先端3Dオブジェクト検出フレームワークを用いて評価されている。
論文 参考訳(メタデータ) (2021-04-22T12:47:37Z) - There and Back Again: Learning to Simulate Radar Data for Real-World
Applications [21.995474023869388]
我々は、シミュレーションされた標高マップに基づいて忠実なレーダー観測を合成できるレーダセンサモデルを学ぶ。
我々は、不整合レーダの例から前方センサーモデルを学ぶための敵対的アプローチを採用する。
実環境におけるシミュレーションデータに基づいて純粋に訓練された下流セグメンテーションモデルを評価することにより,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2020-11-29T15:49:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。