論文の概要: RASPNet: A Benchmark Dataset for Radar Adaptive Signal Processing Applications
- arxiv url: http://arxiv.org/abs/2406.09638v1
- Date: Fri, 14 Jun 2024 00:07:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 17:05:01.873061
- Title: RASPNet: A Benchmark Dataset for Radar Adaptive Signal Processing Applications
- Title(参考訳): RASPNet: レーダ適応信号処理アプリケーションのためのベンチマークデータセット
- Authors: Shyam Venkatasubramanian, Bosung Kang, Ali Pezeshki, Muralidhar Rangaswamy, Vahid Tarokh,
- Abstract要約: RASPNetと呼ばれるこのデータセットは、アメリカ合衆国全土の様々な地形や土地タイプにまたがる100の現実的なシナリオで構成されている。
RASPNetは、適応レーダー処理技術の評価を標準化する大規模で現実的なデータセットの可用性において、大きなギャップを埋めようとしている。
- 参考スコア(独自算出の注目度): 20.589332431911842
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents a large-scale dataset for radar adaptive signal processing (RASP) applications, aimed at supporting the development of data-driven models within the radar community. The dataset, called RASPNet, consists of 100 realistic scenarios compiled over a variety of topographies and land types from across the contiguous United States, designed to reflect a diverse array of real-world environments. Within each scenario, RASPNet consists of 10,000 clutter realizations from an airborne radar setting, which can be utilized for radar algorithm development and evaluation. RASPNet intends to fill a prominent gap in the availability of a large-scale, realistic dataset that standardizes the evaluation of adaptive radar processing techniques. We describe its construction, organization, and several potential applications, which includes a transfer learning example to demonstrate how RASPNet can be leveraged for realistic adaptive radar processing scenarios.
- Abstract(参考訳): 本研究では、レーダコミュニティ内でのデータ駆動モデルの開発を支援することを目的とした、レーダ適応信号処理(RASP)アプリケーションのための大規模データセットを提案する。
RASPNetと呼ばれるこのデータセットは、米国全土の様々な地形や土地タイプにまたがる100の現実的なシナリオで構成されており、さまざまな現実世界環境を反映するように設計されている。
各シナリオ内では、RASPNetは、レーダーアルゴリズムの開発と評価に使用できる航空機搭載レーダー設定からの1万のクラッタ実現で構成されている。
RASPNetは、適応レーダー処理技術の評価を標準化する大規模で現実的なデータセットの可用性において、大きなギャップを埋めようとしている。
RASPNetが現実的な適応型レーダ処理シナリオにどのように活用できるかを示すために、転送学習の例を含む、その構成、組織、およびいくつかの潜在的なアプリケーションについて説明する。
関連論文リスト
- Radon Implicit Field Transform (RIFT): Learning Scenes from Radar Signals [9.170594803531866]
Implicit Neural Representation (INR)は、最小限のレーダーデータでコンパクトで連続的な表現を提供する。
RIFTは、レーダーのための古典的なフォワードモデルとINRベースのシーン表現の2つのコンポーネントで構成されている。
データフットプリントは10%に過ぎず、RIFTモデルはシーン再構築において最大188%の改善を実現している。
論文 参考訳(メタデータ) (2024-10-16T16:59:37Z) - Radio Map Estimation -- An Open Dataset with Directive Transmitter
Antennas and Initial Experiments [49.61405888107356]
実世界の現実的な都市地図とオープンなデータソースからの航空画像とともに、シミュレーションされた経路損失無線マップのデータセットをリリースする。
モデルアーキテクチャ,入力特徴設計,航空画像からの無線マップの推定に関する実験を行った。
論文 参考訳(メタデータ) (2024-01-12T14:56:45Z) - Diffusion Models for Interferometric Satellite Aperture Radar [73.01013149014865]
確率拡散モデル (Probabilistic Diffusion Models, PDMs) は、最近、非常に有望な生成モデルのクラスとして登場した。
ここでは、PDMを活用して、レーダーベースの衛星画像データセットを複数生成する。
PDMは複雑で現実的な構造を持つ画像を生成することに成功したが、サンプリング時間は依然として問題である。
論文 参考訳(メタデータ) (2023-08-31T16:26:17Z) - Scaling Data Generation in Vision-and-Language Navigation [116.95534559103788]
本稿では,学習のための大規模データ生成に有効なパラダイムを提案する。
我々は、HM3DとGibsonのデータセットから1200以上のフォトリアリスティック環境を適用し、490万の命令軌道対を合成する。
我々の大規模データセットのおかげで、既存のエージェントの性能は(以前のSoTAでは+11%絶対)、単純な模倣学習によってR2Rテストの分割で80%の単ラン成功率で大幅に向上できる。
論文 参考訳(メタデータ) (2023-07-28T16:03:28Z) - Super-Resolution Radar Imaging with Sparse Arrays Using a Deep Neural
Network Trained with Enhanced Virtual Data [0.4640835690336652]
本稿では,極薄レーダー開口部からのレーダデータを完全に処理できるディープニューラルネットワーク(DNN)に基づく手法を提案する。
提案したDNN処理は、エイリアスフリーレーダイメージングと超解像の両方を提供することができる。
完全に占有された配列で達成されるのとほぼ同じ解像度と画質を同時に提供する。
論文 参考訳(メタデータ) (2023-06-16T13:37:47Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
本稿では,レーダ検出を点雲に展開する深層学習手法を提案する。
このアルゴリズムは、距離依存クラスタリングと入力点雲の事前処理により、レーダ固有の特性に適応する。
我々のネットワークは、レーダポイント雲のセマンティックセグメンテーションのタスクにおいて、PointNet++に基づく最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-05-22T07:09:35Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
リアルLiDARセンサのデータ駆動シミュレーションのためのパイプラインを提案する。
本モデルでは, 透明表面上の落下点などの現実的な効果を符号化できることが示される。
我々は2つの異なるLiDARセンサのモデルを学習し、それに従ってシミュレーションされたLiDARデータを改善する。
論文 参考訳(メタデータ) (2022-09-22T13:12:54Z) - Toward Data-Driven STAP Radar [23.333816677794115]
我々は、時空間適応処理(STAP)レーダーに対するデータ駆動アプローチを特徴付ける。
所定領域に可変強度のターゲットをランダムに配置することにより、受信レーダ信号の豊富なサンプルデータセットを生成する。
この領域内の各データサンプルに対して、ビームフォーマの出力パワーのレンジ、方位、および上昇のヒートマップテンソルを生成する。
空中に浮かぶシナリオでは、動くレーダーは、ビデオに似た、これらのタイムインデクシングされたイメージスタックのシーケンスを生成する。
論文 参考訳(メタデータ) (2022-01-26T02:28:13Z) - Large-Scale Topological Radar Localization Using Learned Descriptors [15.662820454886202]
本稿では、レーダースキャン画像から回転不変なグローバルディスクリプタを計算するための、単純かつ効率的なディープネットワークアーキテクチャを提案する。
提案手法の性能と一般化能力を2つの大規模運転データセットで実験的に評価した。
論文 参考訳(メタデータ) (2021-10-06T21:57:23Z) - Real-time Outdoor Localization Using Radio Maps: A Deep Learning
Approach [59.17191114000146]
LocUNet: ローカライゼーションタスクのための畳み込み、エンドツーエンドのトレーニングニューラルネットワーク(NN)。
我々は,LocUNetがユーザを最先端の精度でローカライズし,無線マップ推定における不正確性が高いことを示す。
論文 参考訳(メタデータ) (2021-06-23T17:27:04Z) - There and Back Again: Learning to Simulate Radar Data for Real-World
Applications [21.995474023869388]
我々は、シミュレーションされた標高マップに基づいて忠実なレーダー観測を合成できるレーダセンサモデルを学ぶ。
我々は、不整合レーダの例から前方センサーモデルを学ぶための敵対的アプローチを採用する。
実環境におけるシミュレーションデータに基づいて純粋に訓練された下流セグメンテーションモデルを評価することにより,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2020-11-29T15:49:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。