論文の概要: RemoteDet-Mamba: A Hybrid Mamba-CNN Network for Multi-modal Object Detection in Remote Sensing Images
- arxiv url: http://arxiv.org/abs/2410.13532v1
- Date: Thu, 17 Oct 2024 13:20:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:19:37.208931
- Title: RemoteDet-Mamba: A Hybrid Mamba-CNN Network for Multi-modal Object Detection in Remote Sensing Images
- Title(参考訳): RemoteDet-Mamba:リモートセンシング画像におけるマルチモーダル物体検出のためのハイブリッドMamba-CNNネットワーク
- Authors: Kejun Ren, Xin Wu, Lianming Xu, Li Wang,
- Abstract要約: 我々は,RemoteDet-Mambaと呼ばれる,四方向選択的走査型融合方式を用いたマルチモーダルリモートセンシングネットワークを提案する。
RemoteDet-Mambaは、単一モードのローカル機能の学習とパッチレベルのグローバル機能の統合を同時に促進する。
DroneVehicleデータセットの実験結果は、RemoteDet-Mambaの有効性を示している。
- 参考スコア(独自算出の注目度): 13.98477009749389
- License:
- Abstract: Unmanned aerial vehicle (UAV) remote sensing is widely applied in fields such as emergency response, owing to its advantages of rapid information acquisition and low cost. However, due to the effects of shooting distance and imaging mechanisms, the objects in the images present challenges such as small size, dense distribution, and low inter-class differentiation. To this end, we propose a multimodal remote sensing detection network that employs a quad-directional selective scanning fusion strategy called RemoteDet-Mamba. RemoteDet-Mamba simultaneously facilitates the learning of single-modal local features and the integration of patch-level global features across modalities, enhancing the distinguishability for small objects and utilizing local information to improve discrimination between different classes. Additionally, the use of Mamba's serial processing significantly increases detection speed. Experimental results on the DroneVehicle dataset demonstrate the effectiveness of RemoteDet-Mamba, which achieves superior detection accuracy compared to state-of-the-art methods while maintaining computational efficiency and parameter count.
- Abstract(参考訳): 無人航空機(UAV)リモートセンシングは、迅速な情報取得と低コストの利点により、緊急応答などの分野に広く応用されている。
しかし、撮影距離と撮像機構の影響により、画像内の物体は小ささ、密度分布、クラス間の分化の低さといった課題を呈する。
そこで本稿では,RemoteDet-Mambaと呼ばれる,四方向選択的走査型核融合方式を用いたマルチモーダルリモートセンシングネットワークを提案する。
RemoteDet-Mambaは同時に、単一モードのローカルな特徴の学習と、モジュール間のパッチレベルのグローバルな特徴の統合を促進し、小さなオブジェクトの識別性を向上し、ローカル情報を活用して、異なるクラス間の識別を改善する。
さらに、Mambaのシリアル処理を使用することで検出速度が大幅に向上した。
DroneVehicleデータセットの実験結果は、RemoteDet-Mambaの有効性を示し、計算効率とパラメータ数を維持しながら、最先端の手法よりも優れた検出精度を実現する。
関連論文リスト
- Remote Sensing Image Segmentation Using Vision Mamba and Multi-Scale Multi-Frequency Feature Fusion [9.098711843118629]
本稿では、状態空間モデル(SSM)を導入し、視覚マンバ(CVMH-UNet)に基づく新しいハイブリッドセマンティックセマンティックネットワークを提案する。
本手法は、クロス2Dスキャン(CS2D)を用いて、複数の方向からグローバル情報をフルにキャプチャする、クロス走査型視覚状態空間ブロック(CVSSBlock)を設計する。
ローカル情報取得におけるビジョン・マンバ(VMamba)の制約を克服するために畳み込みニューラルネットワークのブランチを組み込むことにより、このアプローチはグローバル機能とローカル機能の両方の包括的な分析を促進する。
論文 参考訳(メタデータ) (2024-10-08T02:17:38Z) - Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
我々は、効率的な特徴抽出の観点から再正規化群理論を実装するために、知識発見ネットワーク(KDN)を設計する。
KDN上の再正規化接続(RC)は、マルチスケール特徴の「相乗的焦点」を可能にする。
RCはFPNベースの検出器のマルチレベル特徴の分割・対数機構を幅広いスケールで予測されたタスクに拡張する。
論文 参考訳(メタデータ) (2024-09-09T13:56:22Z) - RS-Mamba for Large Remote Sensing Image Dense Prediction [58.12667617617306]
本稿では,大規模なVHRリモートセンシング画像における高密度予測タスクに対するリモートセンシング・マンバ(RSM)を提案する。
RSMは、線形複雑度でリモートセンシング画像のグローバルなコンテキストを捉えるように設計されている。
我々のモデルは、大規模なリモートセンシング画像の変換器ベースモデルよりも効率と精度がよい。
論文 参考訳(メタデータ) (2024-04-03T12:06:01Z) - LCPR: A Multi-Scale Attention-Based LiDAR-Camera Fusion Network for
Place Recognition [11.206532393178385]
本稿では,マルチモーダル位置認識のための新しいニューラルネットワークLCPRを提案する。
位置認識性能を向上させるために,マルチビューカメラとLiDARデータを効果的に利用することができる。
論文 参考訳(メタデータ) (2023-11-06T15:39:48Z) - Multimodal Transformer Using Cross-Channel attention for Object Detection in Remote Sensing Images [1.662438436885552]
マルチモーダル融合は、複数のモーダルからのデータを融合することで精度を高めることが決定されている。
早期に異なるチャネル間の関係をマッピングするための新しいマルチモーダル融合戦略を提案する。
本手法は,中期・後期の手法とは対照的に,早期の融合に対処することにより,既存の手法と比較して,競争力や性能に優れる。
論文 参考訳(メタデータ) (2023-10-21T00:56:11Z) - A Dual Attentive Generative Adversarial Network for Remote Sensing Image
Change Detection [6.906936669510404]
本稿では,高分解能なリモートセンシング画像変化検出タスクを実現するために,二重注意生成対向ネットワークを提案する。
DAGANフレームワークは、85.01%がIoU、91.48%がF1スコアであり、LEVIRデータセットの先進的な手法よりもパフォーマンスが良い。
論文 参考訳(メタデータ) (2023-10-03T08:26:27Z) - Aerial Images Meet Crowdsourced Trajectories: A New Approach to Robust
Road Extraction [110.61383502442598]
我々は、Cross-Modal Message Propagation Network (CMMPNet)と呼ばれる新しいニューラルネットワークフレームワークを紹介する。
CMMPNetは、モダリティ固有の表現学習のための2つのディープオートエンコーダと、クロスモーダル表現洗練のためのテーラー設計のデュアルエンハンスメントモジュールで構成されている。
実世界の3つのベンチマーク実験により, CMMPNetによる堅牢な道路抽出の有効性が示された。
論文 参考訳(メタデータ) (2021-11-30T04:30:10Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
変換器を用いた赤外線小径目標検出手法を提案する。
画像特徴の相互作用情報をより広い範囲で学習するために,変換器の自己認識機構を採用する。
最小限のターゲットの機能を学習するための機能拡張モジュールも設計しています。
論文 参考訳(メタデータ) (2021-09-29T12:23:41Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
適応型単一段アンカーフリーベースアーキテクチャにおける2つのモードの効果的かつ効率的な多重スペクトル融合法を提案する。
我々は,直接的境界ボックス予測ではなく,対象の中心と規模に基づく歩行者表現の学習を目指す。
その結果,小型歩行者の検出における本手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-08-19T13:13:01Z) - Multi-image Super Resolution of Remotely Sensed Images using Residual
Feature Attention Deep Neural Networks [1.3764085113103222]
本研究は,マルチイメージ超解像課題に効果的に取り組む新しい残像注意モデル(RAMS)を提案する。
本研究では,3次元畳み込みによる視覚特徴の注意機構を導入し,意識的なデータ融合と情報抽出を実現する。
我々の表現学習ネットワークは、冗長な低周波信号を流すためにネストした残差接続を広範囲に利用している。
論文 参考訳(メタデータ) (2020-07-06T22:54:02Z) - X-ModalNet: A Semi-Supervised Deep Cross-Modal Network for
Classification of Remote Sensing Data [69.37597254841052]
我々はX-ModalNetと呼ばれる新しいクロスモーダルディープラーニングフレームワークを提案する。
X-ModalNetは、ネットワークの上部にある高レベルな特徴によって構築されたアップダスタブルグラフ上にラベルを伝搬するため、うまく一般化する。
我々は2つのマルチモーダルリモートセンシングデータセット(HSI-MSIとHSI-SAR)上でX-ModalNetを評価し、いくつかの最先端手法と比較して大幅に改善した。
論文 参考訳(メタデータ) (2020-06-24T15:29:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。