Measurement-free, scalable and fault-tolerant universal quantum computing
- URL: http://arxiv.org/abs/2410.13568v1
- Date: Thu, 17 Oct 2024 14:04:14 GMT
- Title: Measurement-free, scalable and fault-tolerant universal quantum computing
- Authors: Friederike Butt, David F. Locher, Katharina Brechtelsbauer, Hans Peter Büchler, Markus Müller,
- Abstract summary: We present a complete toolbox for fault-tolerant universal quantum computing without the need for measurements during algorithm execution.
We develop new fault-tolerant, measurement-free protocols to transfer encoded information between 2D and 3D color codes.
Our measurement-free approach provides a practical and scalable pathway for universal quantum computing on state-of-the-art quantum processors.
- Score: 1.2600261666440378
- License:
- Abstract: Reliable execution of large-scale quantum algorithms requires robust underlying operations and this challenge is addressed by quantum error correction (QEC). Most modern QEC protocols rely on measurements and feed-forward operations, which are experimentally demanding, and often slow and prone to high error rates. Additionally, no single error-correcting code intrinsically supports the full set of logical operations required for universal quantum computing, resulting in an increased operational overhead. In this work, we present a complete toolbox for fault-tolerant universal quantum computing without the need for measurements during algorithm execution by combining the strategies of code switching and concatenation. To this end, we develop new fault-tolerant, measurement-free protocols to transfer encoded information between 2D and 3D color codes, which offer complementary and in combination universal sets of robust logical gates. We identify experimentally realistic regimes where these protocols surpass state-of-the-art measurement-based approaches. Moreover, we extend the scheme to higher-distance codes by concatenating the 2D color code with itself and by integrating code switching for operations that lack a natively fault-tolerant implementation. Our measurement-free approach thereby provides a practical and scalable pathway for universal quantum computing on state-of-the-art quantum processors.
Related papers
- Low-overhead fault-tolerant quantum computation by gauging logical operators [0.7673339435080445]
Recent progress has uncovered quantum error-correcting codes with sparse connectivity requirements and constant qubit overhead.
Existing schemes for fault-tolerant logical measurement do not always achieve low qubit overhead.
We present a low-overhead method to implement fault-tolerant logical measurement in a quantum error-correcting code by treating the logical operator as a symmetry and gauging it.
arXiv Detail & Related papers (2024-10-03T05:04:12Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
We show that fault-tolerant logical operations can be performed with constant time overhead for a broad class of quantum codes.
We prove that the deviation from the ideal measurement result distribution can be made exponentially small in the code distance.
Our work sheds new light on the theory of fault tolerance, potentially reducing the space-time cost of practical fault-tolerant quantum computation by orders of magnitude.
arXiv Detail & Related papers (2024-06-25T15:43:25Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Fault-Tolerant Code Switching Protocols for Near-Term Quantum Processors [0.0]
Top color codes are widely acknowledged as promising candidates for fault-tolerant quantum computing.
Top color codes can provide a universal gate set $$H, T, C$$, with the T-gate missing in the T-dimensional and the H-gate in the three-dimensional case.
We construct resource-optimized deterministic and non-deterministic code switching protocols for two- and three-dimensional distance-three color codes.
arXiv Detail & Related papers (2023-06-30T14:16:52Z) - Modular decoding: parallelizable real-time decoding for quantum
computers [55.41644538483948]
Real-time quantum computation will require decoding algorithms capable of extracting logical outcomes from a stream of data generated by noisy quantum hardware.
We propose modular decoding, an approach capable of addressing this challenge with minimal additional communication and without sacrificing decoding accuracy.
We introduce the edge-vertex decomposition, a concrete instance of modular decoding for lattice-surgery style fault-tolerant blocks.
arXiv Detail & Related papers (2023-03-08T19:26:10Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Applying the Quantum Error-correcting Codes for Fault-tolerant Blind
Quantum Computation [33.51070104730591]
The Blind Quantum Computation (BQC) is a delegated protocol, which allows a client to rent a remote quantum server to implement desired quantum computations.
We propose a fault-tolerant blind quantum computation protocol with quantum error-correcting codes to avoid the accumulation and propagation of qubit errors during the computing.
arXiv Detail & Related papers (2023-01-05T08:52:55Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Fault-tolerant circuit synthesis for universal fault-tolerant quantum
computing [0.0]
We present a quantum circuit synthesis algorithm for implementing universal fault-tolerant quantum computing based on geometricd codes.
We show how to synthesize the set of universal fault-tolerant protocols for $[[7,1,3]]$ Steane code and the syndrome measurement protocol of $[[23, 1, 7]]$ Golay code.
arXiv Detail & Related papers (2022-06-06T15:43:36Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.