Demonstration of measurement-free universal fault-tolerant quantum computation
- URL: http://arxiv.org/abs/2506.22600v1
- Date: Fri, 27 Jun 2025 19:51:44 GMT
- Title: Demonstration of measurement-free universal fault-tolerant quantum computation
- Authors: Friederike Butt, Ivan Pogorelov, Robert Freund, Alex Steiner, Marcel Meyer, Thomas Monz, Markus Müller,
- Abstract summary: We propose and experimentally demonstrate a universal toolbox of fault-tolerant logical operations without mid-circuit measurements on a trapped-ion quantum processor.<n>We realize a fault-tolerant universal gate set on an eight-qubit error-detecting code hosting three logical qubits, based on state injection, which can be executed by coherent gate operations only.<n>Our work demonstrates the practical feasibility and provides first steps into the largely unexplored direction of measurement-free quantum computation.
- Score: 1.401588226763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to perform quantum error correction (QEC) and robust gate operations on encoded qubits opens the door to demonstrations of quantum algorithms. Contemporary QEC schemes typically require mid-circuit measurements with feed-forward control, which are challenging for qubit control, often slow, and susceptible to relatively high error rates. In this work, we propose and experimentally demonstrate a universal toolbox of fault-tolerant logical operations without mid-circuit measurements on a trapped-ion quantum processor. We present modular logical state teleportation between two four-qubit error-detecting codes without measurements during algorithm execution. Moreover, we realize a fault-tolerant universal gate set on an eight-qubit error-detecting code hosting three logical qubits, based on state injection, which can be executed by coherent gate operations only. We apply this toolbox to experimentally realize Grover's quantum search algorithm fault-tolerantly on three logical qubits encoded in eight physical qubits, with the implementation displaying clear identification of the desired solution states. Our work demonstrates the practical feasibility and provides first steps into the largely unexplored direction of measurement-free quantum computation.
Related papers
- Realizing Lattice Surgery on Two Distance-Three Repetition Codes with Superconducting Qubits [31.25958618453706]
We demonstrate lattice surgery between two distance-three repetition-code qubits by splitting a single distance-three surface-code qubit.<n>We achieve an improvement in the value of the decoded $ZZ$ logical two-qubit observable compared to a similar non-encoded circuit.
arXiv Detail & Related papers (2025-01-08T16:49:27Z) - Experimental Demonstration of Logical Magic State Distillation [62.77974948443222]
We present the experimental realization of magic state distillation with logical qubits on a neutral-atom quantum computer.<n>Our approach makes use of a dynamically reconfigurable architecture to encode and perform quantum operations on many logical qubits in parallel.
arXiv Detail & Related papers (2024-12-19T18:38:46Z) - Measurement-free, scalable and fault-tolerant universal quantum computing [1.2600261666440378]
We present a complete toolbox for fault-tolerant universal quantum computing without the need for measurements during algorithm execution.
We develop new fault-tolerant, measurement-free protocols to transfer encoded information between 2D and 3D color codes.
Our measurement-free approach provides a practical and scalable pathway for universal quantum computing on state-of-the-art quantum processors.
arXiv Detail & Related papers (2024-10-17T14:04:14Z) - Low-Overhead Transversal Fault Tolerance for Universal Quantum Computation [36.3664581543528]
We show that logical operations can be performed fault-tolerantly with only a constant number of extraction rounds.<n>Our work sheds new light on the theory of quantum fault tolerance and has the potential to reduce the space-time cost of practical fault-tolerant quantum computation by over an order of magnitude.
arXiv Detail & Related papers (2024-06-25T15:43:25Z) - Transversal CNOT gate with multi-cycle error correction [1.7359033750147501]
A scalable and programmable quantum computer holds the potential to solve computationally intensive tasks that computers cannot accomplish within a reasonable time frame, achieving quantum advantage.
The vulnerability of the current generation of quantum processors to errors poses a significant challenge towards executing complex and deep quantum circuits required for practical problems.
Our work establishes the feasibility of employing logical CNOT gates alongside error detection on a superconductor-based processor using current generation quantum hardware.
arXiv Detail & Related papers (2024-06-18T04:50:15Z) - Determining the ability for universal quantum computing: Testing
controllability via dimensional expressivity [39.58317527488534]
Controllability tests can be used in the design of quantum devices to reduce the number of external controls.
We devise a hybrid quantum-classical algorithm based on a parametrized quantum circuit.
arXiv Detail & Related papers (2023-08-01T15:33:41Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Fault-tolerant operation of a logical qubit in a diamond quantum
processor [0.21670084965090575]
We demonstrate fault-tolerant operations on a logical qubit using spin qubits in diamond.
Our realization of fault-tolerant protocols on the logical-qubit level is a key step towards large-scale quantum information processing.
arXiv Detail & Related papers (2021-08-03T17:39:25Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Optical demonstration of quantum fault-tolerant threshold [2.6098148548199047]
A major challenge in practical quantum computation is the ineludible errors caused by the interaction of quantum systems with their environment.
Fault-tolerant schemes, in which logical qubits are encoded by several physical qubits, enable correct output of logical qubits under the presence of errors.
Here, we experimentally demonstrate the existence of the threshold in a special fault-tolerant protocol.
arXiv Detail & Related papers (2020-12-16T13:23:29Z) - Entangling logical qubits with lattice surgery [47.037230560588604]
We show the experimental realization of lattice surgery between two topologically encoded qubits in a 10-qubit ion trap quantum information processor.
In particular, we demonstrate entanglement between two logical qubits and we implement logical state teleportation.
arXiv Detail & Related papers (2020-06-04T18:00:09Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.