論文の概要: CLIMB: Language-Guided Continual Learning for Task Planning with Iterative Model Building
- arxiv url: http://arxiv.org/abs/2410.13756v1
- Date: Thu, 17 Oct 2024 16:53:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:20:36.714436
- Title: CLIMB: Language-Guided Continual Learning for Task Planning with Iterative Model Building
- Title(参考訳): CLIMB:反復モデル構築によるタスクプランニングのための言語指導型連続学習
- Authors: Walker Byrnes, Miroslav Bogdanovic, Avi Balakirsky, Stephen Balakirsky, Animesh Garg,
- Abstract要約: ロボットタスク計画のための連続学習フレームワークCLIMBを提案する。
CLIMBは、自然言語の記述からモデルを構築し、タスクを解決しながら、予期せぬ述語を学び、その情報を将来の問題に保存する。
またBlocksWorld++ドメインも開発しています。これは、簡単に使える実環境と、継続的な学習を評価するのに困難なタスクのカリキュラムを兼ね備えたシミュレーション環境です。
- 参考スコア(独自算出の注目度): 30.274897468701592
- License:
- Abstract: Intelligent and reliable task planning is a core capability for generalized robotics, requiring a descriptive domain representation that sufficiently models all object and state information for the scene. We present CLIMB, a continual learning framework for robot task planning that leverages foundation models and execution feedback to guide domain model construction. CLIMB can build a model from a natural language description, learn non-obvious predicates while solving tasks, and store that information for future problems. We demonstrate the ability of CLIMB to improve performance in common planning environments compared to baseline methods. We also develop the BlocksWorld++ domain, a simulated environment with an easily usable real counterpart, together with a curriculum of tasks with progressing difficulty for evaluating continual learning. Additional details and demonstrations for this system can be found at https://plan-with-climb.github.io/ .
- Abstract(参考訳): インテリジェントで信頼性の高いタスクプランニングは、汎用ロボティクスのコア機能であり、シーンのすべてのオブジェクトと状態情報を十分にモデル化する記述的なドメイン表現を必要とする。
基礎モデルと実行フィードバックを利用してドメインモデル構築をガイドするロボットタスク計画のための連続学習フレームワークであるCLIMBを提案する。
CLIMBは、自然言語の記述からモデルを構築し、タスクを解決しながら、非曖昧な述語を学習し、その情報を将来の問題に格納することができる。
基本手法と比較して,共通計画環境におけるCLIMBの性能向上を実証する。
またBlocksWorld++ドメインも開発しています。これは、簡単に使える実環境と、継続的な学習を評価するのに困難なタスクのカリキュラムを兼ね備えたシミュレーション環境です。
このシステムのさらなる詳細とデモはhttps://plan-with-climb.github.io/で見ることができる。
関連論文リスト
- LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
テキストエンボディの世界における6つの代表的具体的タスクを特徴とする多目的・シミュレーション不要なテストベッドであるLangSuitEを紹介する。
以前のLLMベースのテストベッドと比較すると、LangSuitEは複数のシミュレーションエンジンを使わずに、多様な環境への適応性を提供する。
具体化された状態の履歴情報を要約した新しいチェーン・オブ・ソート(CoT)スキーマであるEmMemを考案する。
論文 参考訳(メタデータ) (2024-06-24T03:36:29Z) - Details Make a Difference: Object State-Sensitive Neurorobotic Task Planning [15.03025428687218]
オブジェクトの状態は現在の状態や状態を反映しており、ロボットのタスク計画と操作にとって重要である。
近年,LLM (Large Language Models) とVLM (Vision-Language Models) は,計画生成において顕著な能力を示している。
我々は、事前学習ニューラルネットワークによって強化されたタスク計画エージェントであるObject State-Sensitive Agent (OSSA)を紹介する。
論文 参考訳(メタデータ) (2024-06-14T12:52:42Z) - PARADISE: Evaluating Implicit Planning Skills of Language Models with Procedural Warnings and Tips Dataset [0.0]
PARADISE は,wikiHow をベースとした実践的な手続きテキスト上で,Q&A 形式を用いた帰納的推論タスクである。
計画の暗黙的な知識を与えられた目標からのみ推論するモデルの能力をテストすることを目的として、中間的なステップを除く、目標に直接関連した警告およびヒント推論タスクを含む。
我々の実験は、微調整言語モデルとゼロショットプロンプトを利用して、ほとんどのシナリオにおいて、大規模言語モデルに対するタスク固有小モデルの有効性を明らかにした。
論文 参考訳(メタデータ) (2024-03-05T18:01:59Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
本稿では,タスク固有の計画表現を自動構築するフレームワークであるAdaについて述べる。
Adaは、プランナー互換の高レベルアクション抽象化と、特定の計画タスク領域に適応した低レベルコントローラのライブラリを対話的に学習する。
論文 参考訳(メタデータ) (2023-12-13T23:35:31Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - Grounded Decoding: Guiding Text Generation with Grounded Models for
Embodied Agents [111.15288256221764]
グラウンデッドデコーディングプロジェクトは、両方のモデルの知識を活用することで、ロボット環境で複雑な長期タスクを解決することを目的としている。
我々はこれを確率的フィルタリングに類似した問題として、言語モデルの下で高い確率を持つシーケンスをデコードし、基底モデル対象のセットで高い確率を示す。
本研究では,3つのシミュレーション領域と実世界の領域にまたがって,そのような基底モデルがどのように得られるのかを実証し,両モデルの知識を活用して,ロボット環境での複雑な長期的タスクを解くことができることを示す。
論文 参考訳(メタデータ) (2023-03-01T22:58:50Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
大規模言語モデル(LLM)は、タスク計画中の潜在的な次のアクションを評価するために使用することができる。
本稿では, プログラム型LCMプロンプト構造を用いて, 配置環境間での計画生成機能を実現する。
論文 参考訳(メタデータ) (2022-09-22T20:29:49Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z) - Deep compositional robotic planners that follow natural language
commands [21.481360281719006]
サンプルベースのロボットプランナが、自然言語コマンドのシーケンスを理解するためにどのように拡張できるかを示す。
我々のアプローチは、オブジェクト、動詞、空間関係、属性を含む複雑なコマンドのパースに基づいて構築されたディープネットワークを組み合わせる。
論文 参考訳(メタデータ) (2020-02-12T19:56:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。