Adversarial Inception for Bounded Backdoor Poisoning in Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2410.13995v2
- Date: Mon, 21 Oct 2024 16:27:48 GMT
- Title: Adversarial Inception for Bounded Backdoor Poisoning in Deep Reinforcement Learning
- Authors: Ethan Rathbun, Christopher Amato, Alina Oprea,
- Abstract summary: We propose a new class of backdoor attacks against Deep Reinforcement Learning (DRL) algorithms.
These attacks achieve state of the art performance while minimally altering the agent's rewards.
We then devise an online attack which significantly out-performs prior attacks under bounded reward constraints.
- Score: 16.350898218047405
- License:
- Abstract: Recent works have demonstrated the vulnerability of Deep Reinforcement Learning (DRL) algorithms against training-time, backdoor poisoning attacks. These attacks induce pre-determined, adversarial behavior in the agent upon observing a fixed trigger during deployment while allowing the agent to solve its intended task during training. Prior attacks rely on arbitrarily large perturbations to the agent's rewards to achieve both of these objectives - leaving them open to detection. Thus, in this work, we propose a new class of backdoor attacks against DRL which achieve state of the art performance while minimally altering the agent's rewards. These "inception" attacks train the agent to associate the targeted adversarial behavior with high returns by inducing a disjunction between the agent's chosen action and the true action executed in the environment during training. We formally define these attacks and prove they can achieve both adversarial objectives. We then devise an online inception attack which significantly out-performs prior attacks under bounded reward constraints.
Related papers
- CuDA2: An approach for Incorporating Traitor Agents into Cooperative Multi-Agent Systems [13.776447110639193]
We introduce a novel method that involves injecting traitor agents into the CMARL system.
In TMDP, traitors are trained using the same MARL algorithm as the victim agents, with their reward function set as the negative of the victim agents' reward.
CuDA2 enhances the efficiency and aggressiveness of attacks on the specified victim agents' policies.
arXiv Detail & Related papers (2024-06-25T09:59:31Z) - SleeperNets: Universal Backdoor Poisoning Attacks Against Reinforcement Learning Agents [16.350898218047405]
Reinforcement learning (RL) is an actively growing field that is seeing increased usage in real-world, safety-critical applications.
In this work we explore a particularly stealthy form of training-time attacks against RL -- backdoor poisoning.
We formulate a novel poisoning attack framework which interlinks the adversary's objectives with those of finding an optimal policy.
arXiv Detail & Related papers (2024-05-30T23:31:25Z) - SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
Modern NLP models are often trained on public datasets drawn from diverse sources.
Data poisoning attacks can manipulate the model's behavior in ways engineered by the attacker.
Several strategies have been proposed to mitigate the risks associated with backdoor attacks.
arXiv Detail & Related papers (2024-05-19T14:50:09Z) - On the Difficulty of Defending Contrastive Learning against Backdoor
Attacks [58.824074124014224]
We show how contrastive backdoor attacks operate through distinctive mechanisms.
Our findings highlight the need for defenses tailored to the specificities of contrastive backdoor attacks.
arXiv Detail & Related papers (2023-12-14T15:54:52Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
A backdoored model always predicts a target class in the presence of a predefined trigger pattern.
In general, adversarial training is believed to defend against backdoor attacks.
We propose a hybrid strategy which provides satisfactory robustness across different backdoor attacks.
arXiv Detail & Related papers (2022-02-22T02:24:46Z) - Backdoors Stuck At The Frontdoor: Multi-Agent Backdoor Attacks That
Backfire [8.782809316491948]
We investigate a multi-agent backdoor attack scenario, where multiple attackers attempt to backdoor a victim model simultaneously.
A consistent backfiring phenomenon is observed across a wide range of games, where agents suffer from a low collective attack success rate.
The results motivate the re-evaluation of backdoor defense research for practical environments.
arXiv Detail & Related papers (2022-01-28T16:11:40Z) - Widen The Backdoor To Let More Attackers In [24.540853975732922]
We investigate the scenario of a multi-agent backdoor attack, where multiple non-colluding attackers craft and insert triggered samples in a shared dataset.
We discover a clear backfiring phenomenon: increasing the number of attackers shrinks each attacker's attack success rate.
We then exploit this phenomenon to minimize the collective ASR of attackers and maximize defender's robustness accuracy.
arXiv Detail & Related papers (2021-10-09T13:53:57Z) - Understanding Adversarial Attacks on Observations in Deep Reinforcement
Learning [32.12283927682007]
Deep reinforcement learning models are vulnerable to adversarial attacks which can decrease the victim's total reward by manipulating the observations.
We reformulate the problem of adversarial attacks in function space and separate the previous gradient based attacks into several subspaces.
In the first stage, we train a deceptive policy by hacking the environment, and discover a set of trajectories routing to the lowest reward.
Our method provides a tighter theoretical upper bound for the attacked agent's performance than the existing approaches.
arXiv Detail & Related papers (2021-06-30T07:41:51Z) - Guided Adversarial Attack for Evaluating and Enhancing Adversarial
Defenses [59.58128343334556]
We introduce a relaxation term to the standard loss, that finds more suitable gradient-directions, increases attack efficacy and leads to more efficient adversarial training.
We propose Guided Adversarial Margin Attack (GAMA), which utilizes function mapping of the clean image to guide the generation of adversaries.
We also propose Guided Adversarial Training (GAT), which achieves state-of-the-art performance amongst single-step defenses.
arXiv Detail & Related papers (2020-11-30T16:39:39Z) - Deflecting Adversarial Attacks [94.85315681223702]
We present a new approach towards ending this cycle where we "deflect" adversarial attacks by causing the attacker to produce an input that resembles the attack's target class.
We first propose a stronger defense based on Capsule Networks that combines three detection mechanisms to achieve state-of-the-art detection performance.
arXiv Detail & Related papers (2020-02-18T06:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.