LLMs are Biased Teachers: Evaluating LLM Bias in Personalized Education
- URL: http://arxiv.org/abs/2410.14012v1
- Date: Thu, 17 Oct 2024 20:27:44 GMT
- Title: LLMs are Biased Teachers: Evaluating LLM Bias in Personalized Education
- Authors: Iain Weissburg, Sathvika Anand, Sharon Levy, Haewon Jeong,
- Abstract summary: We evaluate large language models (LLMs) for bias in the personalized educational setting.
We reveal significant biases in how models generate and select educational content tailored to different demographic groups.
- Score: 6.354025374447606
- License:
- Abstract: With the increasing adoption of large language models (LLMs) in education, concerns about inherent biases in these models have gained prominence. We evaluate LLMs for bias in the personalized educational setting, specifically focusing on the models' roles as "teachers". We reveal significant biases in how models generate and select educational content tailored to different demographic groups, including race, ethnicity, sex, gender, disability status, income, and national origin. We introduce and apply two bias score metrics--Mean Absolute Bias (MAB) and Maximum Difference Bias (MDB)--to analyze 9 open and closed state-of-the-art LLMs. Our experiments, which utilize over 17,000 educational explanations across multiple difficulty levels and topics, uncover that models perpetuate both typical and inverted harmful stereotypes.
Related papers
- Bias Similarity Across Large Language Models [32.0365189539138]
Bias in machine learning models has been a chronic problem.
We take a comprehensive look at ten open- and closed-source Large Language Models.
We measure functional similarity to understand how biases manifest across models.
arXiv Detail & Related papers (2024-10-15T19:21:14Z) - Unboxing Occupational Bias: Grounded Debiasing of LLMs with U.S. Labor Data [9.90951705988724]
Large Language Models (LLM) are prone to inheriting and amplifying societal biases.
LLM bias can have far-reaching consequences, leading to unfair practices and exacerbating social inequalities.
arXiv Detail & Related papers (2024-08-20T23:54:26Z) - Spoken Stereoset: On Evaluating Social Bias Toward Speaker in Speech Large Language Models [50.40276881893513]
This study introduces Spoken Stereoset, a dataset specifically designed to evaluate social biases in Speech Large Language Models (SLLMs)
By examining how different models respond to speech from diverse demographic groups, we aim to identify these biases.
The findings indicate that while most models show minimal bias, some still exhibit slightly stereotypical or anti-stereotypical tendencies.
arXiv Detail & Related papers (2024-08-14T16:55:06Z) - VLBiasBench: A Comprehensive Benchmark for Evaluating Bias in Large Vision-Language Model [72.13121434085116]
VLBiasBench is a benchmark aimed at evaluating biases in Large Vision-Language Models (LVLMs)
We construct a dataset encompassing nine distinct categories of social biases, including age, disability status, gender, nationality, physical appearance, race, religion, profession, social economic status and two intersectional bias categories (race x gender, and race x social economic status)
We conduct extensive evaluations on 15 open-source models as well as one advanced closed-source model, providing some new insights into the biases revealing from these models.
arXiv Detail & Related papers (2024-06-20T10:56:59Z) - Pride and Prejudice: LLM Amplifies Self-Bias in Self-Refinement [75.7148545929689]
Large language models (LLMs) improve their performance through self-feedback on certain tasks while degrade on others.
We formally define LLM's self-bias - the tendency to favor its own generation.
We analyze six LLMs on translation, constrained text generation, and mathematical reasoning tasks.
arXiv Detail & Related papers (2024-02-18T03:10:39Z) - Large Language Models are Geographically Biased [47.88767211956144]
We study what Large Language Models (LLMs) know about the world we live in through the lens of geography.
We show various problematic geographic biases, which we define as systemic errors in geospatial predictions.
arXiv Detail & Related papers (2024-02-05T02:32:09Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
Large language models (LLMs) have gained popularity and are being widely adopted by a large user community.
The existing evaluation methods have many constraints, and their results exhibit a limited degree of interpretability.
We propose a bias evaluation framework named GPTBIAS that leverages the high performance of LLMs to assess bias in models.
arXiv Detail & Related papers (2023-12-11T12:02:14Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
Large Language Models (LLMs) have sparked intense debate regarding the prevalence of bias in these models and its mitigation.
We propose a prompt-based method for the extraction of confounding and mediating attributes which contribute to the decision process.
We find that the observed disparate treatment can at least in part be attributed to confounding and mitigating attributes and model misalignment.
arXiv Detail & Related papers (2023-11-15T00:02:25Z) - Investigating Subtler Biases in LLMs: Ageism, Beauty, Institutional, and Nationality Bias in Generative Models [0.0]
This paper investigates bias along less-studied but still consequential, dimensions, such as age and beauty.
We ask whether LLMs hold wide-reaching biases of positive or negative sentiment for specific social groups similar to the "what is beautiful is good" bias found in people in experimental psychology.
arXiv Detail & Related papers (2023-09-16T07:07:04Z) - Gender bias and stereotypes in Large Language Models [0.6882042556551611]
This paper investigates Large Language Models' behavior with respect to gender stereotypes.
We use a simple paradigm to test the presence of gender bias, building on but differing from WinoBias.
Our contributions in this paper are as follows: (a) LLMs are 3-6 times more likely to choose an occupation that stereotypically aligns with a person's gender; (b) these choices align with people's perceptions better than with the ground truth as reflected in official job statistics; (d) LLMs ignore crucial ambiguities in sentence structure 95% of the time in our study items, but when explicitly prompted, they recognize
arXiv Detail & Related papers (2023-08-28T22:32:05Z) - The Unequal Opportunities of Large Language Models: Revealing
Demographic Bias through Job Recommendations [5.898806397015801]
We propose a simple method for analyzing and comparing demographic bias in Large Language Models (LLMs)
We demonstrate the effectiveness of our method by measuring intersectional biases within ChatGPT and LLaMA.
We identify distinct biases in both models toward various demographic identities, such as both models consistently suggesting low-paying jobs for Mexican workers.
arXiv Detail & Related papers (2023-08-03T21:12:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.