論文の概要: Graph Neural Flows for Unveiling Systemic Interactions Among Irregularly Sampled Time Series
- arxiv url: http://arxiv.org/abs/2410.14030v1
- Date: Thu, 17 Oct 2024 21:10:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:26:43.792814
- Title: Graph Neural Flows for Unveiling Systemic Interactions Among Irregularly Sampled Time Series
- Title(参考訳): 不規則サンプリング時系列間の相互作用を解き明かすグラフニューラルフロー
- Authors: Giangiacomo Mercatali, Andre Freitas, Jie Chen,
- Abstract要約: 我々は不規則な時間点で観測された時系列の系統的相互作用を明らかにするグラフベースモデルを開発した。
時系列分類や予測など,いくつかの課題に対するアプローチの有効性を検証し,その有効性を実証する。
- 参考スコア(独自算出の注目度): 5.460420960898444
- License:
- Abstract: Interacting systems are prevalent in nature. It is challenging to accurately predict the dynamics of the system if its constituent components are analyzed independently. We develop a graph-based model that unveils the systemic interactions of time series observed at irregular time points, by using a directed acyclic graph to model the conditional dependencies (a form of causal notation) of the system components and learning this graph in tandem with a continuous-time model that parameterizes the solution curves of ordinary differential equations (ODEs). Our technique, a graph neural flow, leads to substantial enhancements over non-graph-based methods, as well as graph-based methods without the modeling of conditional dependencies. We validate our approach on several tasks, including time series classification and forecasting, to demonstrate its efficacy.
- Abstract(参考訳): 相互作用系は自然界で一般的である。
構成成分が独立して解析された場合、システムのダイナミクスを正確に予測することは困難である。
本研究では,不規則な時間点で観測された時系列の系統的相互作用を明らかにするグラフベースモデルを開発し,非巡回グラフを用いてシステムコンポーネントの条件依存(因果記法の一形態)をモデル化し,常微分方程式(ODE)の解曲線をパラメータ化する連続時間モデルを用いてこのグラフを学習する。
グラフニューラルフローである我々の手法は、条件依存をモデル化せずにグラフベースの手法だけでなく、グラフベースの手法よりも大幅に拡張される。
時系列分類や予測など,いくつかの課題に対するアプローチの有効性を検証し,その有効性を実証する。
関連論文リスト
- State Space Models on Temporal Graphs: A First-Principles Study [30.531930200222423]
深層グラフ学習の研究は、動的挙動を示す実世界の複雑なシステムに応答して、静的グラフから時間グラフへ移行した。
RNNやTransformerのようなシーケンスモデルは、このような時間グラフをモデル化するための主要なバックボーンネットワークである。
時間グラフのダイナミクスをモデル化するためのグラフ状態空間モデルであるGraphSSMを開発した。
論文 参考訳(メタデータ) (2024-06-03T02:56:11Z) - Inferring dynamic regulatory interaction graphs from time series data
with perturbations [14.935318448625718]
本稿では,複雑なシステムにおける時間変化の相互作用グラフを推定するためのRegulatory Temporal Interaction Network Inference (RiTINI)を提案する。
RiTINIは空間・時間グラフアテンションとグラフニューラル常微分方程式(ODE)を組み合わせた新しい組み合わせを用いる
我々は,様々なシミュレーションおよび実世界のデータセット上でのRiTINIの性能を評価する。
論文 参考訳(メタデータ) (2023-06-13T14:25:26Z) - Temporal Graph Neural Networks for Irregular Data [14.653008985229615]
TGNN4Iモデルは、不規則な時間ステップとグラフの部分的な観察の両方を扱うように設計されている。
時間連続力学により、任意の時間ステップでモデルを予測できる。
交通・気候モデルによるシミュレーションデータと実世界のデータの実験は、グラフ構造と時間連続力学の両方の有用性を検証する。
論文 参考訳(メタデータ) (2023-02-16T16:47:55Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
時系列の進化的・マルチスケール相互作用をモデル化する方法を示す。
特に、まず、拡張畳み込みと協調して、スケール固有の相関を捉える階層グラフ構造を提供する。
最終的な予測を得るために上記のコンポーネントを統合するために、統合ニューラルネットワークが提供される。
論文 参考訳(メタデータ) (2022-06-28T08:11:12Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
本稿では,連続時間フレームワークを用いたグラフのスコアベース生成モデルを提案する。
本手法は, トレーニング分布に近い分子を生成できるが, 化学価数則に違反しないことを示す。
論文 参考訳(メタデータ) (2022-02-05T08:21:04Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
ダイナミカルシステムの研究において,連続時間における因果的発見を検討する。
本稿では,ニューラルネットワークを用いた因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-06T08:48:02Z) - Efficient Variational Bayesian Structure Learning of Dynamic Graphical
Models [19.591265962713837]
時間変化のグラフィカルモデルの推定は、様々な社会的、経済的、生物学的、工学的システムにおいて最重要となる。
既存の手法では、グラフの間隔と時間的滑らかさを制御するパラメータを広範囲にチューニングする必要がある。
我々はBADGEという低複素性チューニング自由ベイズアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-16T14:19:23Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
解法ジレンマの統一概念に基づくグラフ分類における本質的難易度の研究」
構造ランドマークと相互作用モデリングのためのインダクティブニューラルネットワークモデルSLIM'を提案する。
論文 参考訳(メタデータ) (2020-06-29T01:01:42Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
定常時間列のためのモデルベースアルゴリズムとデータ駆動型MLツールを組み合わせたフレームワークを提案する。
ニューラルネットワークは、時系列の分布を記述する因子グラフの特定のコンポーネントを別々に学習するために開発された。
本稿では,学習された定常因子グラフに基づく推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-05T07:06:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。