論文の概要: Data-driven rainfall prediction at a regional scale: a case study with Ghana
- arxiv url: http://arxiv.org/abs/2410.14062v2
- Date: Tue, 22 Oct 2024 17:23:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:28:18.882765
- Title: Data-driven rainfall prediction at a regional scale: a case study with Ghana
- Title(参考訳): 地域規模におけるデータ駆動降雨予測--ガーナを事例として
- Authors: Indrajit Kalita, Lucia Vilallonga, Yves Atchade,
- Abstract要約: 最先端の数値天気予報(NWP)モデルは、アフリカの熱帯地域で熟練した降雨予測を作成するのに苦労している。
2つのU-Net畳み込みニューラルネットワーク(CNN)モデルを開発し、12時間と30時間リード時の24時間降雨を予測する。
また,従来のNWPモデルとデータ駆動モデルを組み合わせることにより,予測精度が向上することがわかった。
- 参考スコア(独自算出の注目度): 4.028179670997471
- License:
- Abstract: With a warming planet, tropical regions are expected to experience the brunt of climate change, with more intense and more volatile rainfall events. Currently, state-of-the-art numerical weather prediction (NWP) models are known to struggle to produce skillful rainfall forecasts in tropical regions of Africa. There is thus a pressing need for improved rainfall forecasting in these regions. Over the last decade or so, the increased availability of large-scale meteorological datasets and the development of powerful machine learning models have opened up new opportunities for data-driven weather forecasting. Focusing on Ghana in this study, we use these tools to develop two U-Net convolutional neural network (CNN) models, to predict 24h rainfall at 12h and 30h lead-time. The models were trained using data from the ERA5 reanalysis dataset, and the GPM-IMERG dataset. A special attention was paid to interpretability. We developed a novel statistical methodology that allowed us to probe the relative importance of the meteorological variables input in our model, offering useful insights into the factors that drive precipitation in the Ghana region. Empirically, we found that our 12h lead-time model has performances that match, and in some accounts are better than the 18h lead-time forecasts produced by the ECMWF (as available in the TIGGE dataset). We also found that combining our data-driven model with classical NWP further improves forecast accuracy.
- Abstract(参考訳): 温暖な惑星では、熱帯地域は温暖な気候の変化を経験し、より激しい、より不安定な降雨のイベントを経験することが期待されている。
現在、最先端の数値天気予報(NWP)モデルは、アフリカの熱帯地域で熟練した降雨予測を作成するのに苦労していることが知られている。
そのため、これらの地域では降雨予測の改善の必要性が高まっている。
過去10年ほどで、大規模な気象データセットの可用性が向上し、強力な機械学習モデルの開発が、データ駆動の天気予報の新しい機会を開放した。
本研究では、ガーナに着目し、これらのツールを用いて、2つのU-Net畳み込みニューラルネットワーク(CNN)モデルを構築し、12時間と30時間リード時の24時間降雨を予測する。
モデルは、ERA5再分析データセットとGPM-IMERGデータセットからのデータを用いてトレーニングされた。
解釈可能性に特別な注意が払われた。
本研究では,ガーナ地方における降水要因を考察し,気象変数の相対的重要性を考察する統計手法を開発した。
経験的に、我々の12hのリードタイムモデルには、そのパフォーマンスが一致していることが分かり、いくつかの点でECMWFが生成した18hのリードタイム予測(TIGGEデータセットで利用可能なもの)よりも優れていることがわかりました。
また,従来のNWPモデルとデータ駆動モデルを組み合わせることにより,予測精度が向上することがわかった。
関連論文リスト
- Multi-Source Temporal Attention Network for Precipitation Nowcasting [4.726419619132143]
降水量は様々な産業で重要であり、気候変動の緩和と適応に重要な役割を果たしている。
降水量予測のための効率的な深層学習モデルを導入し,既存の運用モデルよりも高い精度で降雨を最大8時間予測する。
論文 参考訳(メタデータ) (2024-10-11T09:09:07Z) - Weather Prediction Using CNN-LSTM for Time Series Analysis: A Case Study on Delhi Temperature Data [0.0]
本研究では,デリー地域の温度予測精度を高めるために,ハイブリッドCNN-LSTMモデルを提案する。
モデルの構築とトレーニングには,包括的データ前処理や探索分析など,直接的および間接的手法を併用した。
実験結果から,CNN-LSTMモデルが従来の予測手法よりも精度と安定性の両面で優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-09-14T11:06:07Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Machine learning models for daily rainfall forecasting in Northern Tropical Africa using tropical wave predictors [0.0]
数値気象予報(NWP)モデルは、北熱帯アフリカにおけるより単純な気候学に基づく降水予測と比較すると性能が劣ることが多い。
本研究では,ガンマ回帰モデルと熱帯波(TW)で学習した畳み込みニューラルネットワーク(CNN)の2つの機械学習モデルを用いて,7~9月のモンスーンシーズンの日降雨を予測する。
論文 参考訳(メタデータ) (2024-08-29T08:36:22Z) - Leveraging data-driven weather models for improving numerical weather prediction skill through large-scale spectral nudging [1.747339718564314]
本研究は,気象予測に対する物理学的アプローチとAI的アプローチの相対的強みと弱みについて述べる。
GEM予測された大規模状態変数をGraphCast予測に対してスペクトル的に評価するハイブリッドNWP-AIシステムを提案する。
その結果,このハイブリッド手法は,GEMモデルの予測能力を高めるために,GraphCastの強みを活用できることが示唆された。
論文 参考訳(メタデータ) (2024-07-08T16:39:25Z) - Enhanced Precision in Rainfall Forecasting for Mumbai: Utilizing Physics Informed ConvLSTM2D Models for Finer Spatial and Temporal Resolution [0.0]
本研究では,降雨予測精度の向上を目的とした深層学習空間モデルを提案する。
この仮説を検証するため,インド・ムンバイに先立つ降水量6hrと12hrを予測するために,ConvLSTM2Dモデルを導入した。
論文 参考訳(メタデータ) (2024-04-01T13:56:12Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
深層ニューラルネットワークは、気象条件をモデル化するための代替パラダイムを提供する。
MetNet-3は、密度とスパースの両方のデータセンサーから学習し、降水、風、温度、露点を最大24時間前に予測する。
MetNet-3は、それぞれ時間分解能と空間分解能が高く、最大2分と1km、運用遅延は低い。
論文 参考訳(メタデータ) (2023-06-06T07:07:54Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。