論文の概要: MMAD-Purify: A Precision-Optimized Framework for Efficient and Scalable Multi-Modal Attacks
- arxiv url: http://arxiv.org/abs/2410.14089v1
- Date: Thu, 17 Oct 2024 23:52:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:25:21.468902
- Title: MMAD-Purify: A Precision-Optimized Framework for Efficient and Scalable Multi-Modal Attacks
- Title(参考訳): MMAD-Purify: 効率的かつスケーラブルなマルチモーダルアタックのための精度最適化フレームワーク
- Authors: Xinxin Liu, Zhongliang Guo, Siyuan Huang, Chun Pong Lau,
- Abstract要約: 我々は,攻撃フレームワークの有効性を高めるために,精度最適化ノイズ予測器を組み込んだ革新的なフレームワークを導入する。
当社のフレームワークは,マルチモーダル攻撃に対する最先端のソリューションを提供し,レイテンシの低減を実現している。
本研究の枠組みは, 浄化防御に対する優れた伝達性と堅牢性を実現することを実証する。
- 参考スコア(独自算出の注目度): 21.227398434694724
- License:
- Abstract: Neural networks have achieved remarkable performance across a wide range of tasks, yet they remain susceptible to adversarial perturbations, which pose significant risks in safety-critical applications. With the rise of multimodality, diffusion models have emerged as powerful tools not only for generative tasks but also for various applications such as image editing, inpainting, and super-resolution. However, these models still lack robustness due to limited research on attacking them to enhance their resilience. Traditional attack techniques, such as gradient-based adversarial attacks and diffusion model-based methods, are hindered by computational inefficiencies and scalability issues due to their iterative nature. To address these challenges, we introduce an innovative framework that leverages the distilled backbone of diffusion models and incorporates a precision-optimized noise predictor to enhance the effectiveness of our attack framework. This approach not only enhances the attack's potency but also significantly reduces computational costs. Our framework provides a cutting-edge solution for multi-modal adversarial attacks, ensuring reduced latency and the generation of high-fidelity adversarial examples with superior success rates. Furthermore, we demonstrate that our framework achieves outstanding transferability and robustness against purification defenses, outperforming existing gradient-based attack models in both effectiveness and efficiency.
- Abstract(参考訳): ニューラルネットワークは幅広いタスクで顕著なパフォーマンスを達成したが、それでも敵の摂動の影響を受けやすいままであり、安全クリティカルなアプリケーションに重大なリスクをもたらしている。
マルチモダリティの台頭とともに、拡散モデルは、生成タスクだけでなく、画像編集、インペイント、超解像といった様々な用途にも強力なツールとして登場した。
しかし、これらのモデルは弾力性を高めるために攻撃する研究が限られているため、堅牢性に欠けていた。
勾配に基づく敵攻撃や拡散モデルに基づく手法のような従来の攻撃手法は、その反復性に起因する計算の非効率性やスケーラビリティの問題によって妨げられている。
これらの課題に対処するために、拡散モデルの蒸留バックボーンを活用し、精度最適化ノイズ予測器を組み込んだ革新的なフレームワークを導入し、攻撃フレームワークの有効性を高める。
このアプローチは攻撃の有効性を高めるだけでなく、計算コストを大幅に削減する。
我々のフレームワークは、マルチモーダル攻撃に対する最先端のソリューションを提供し、レイテンシを低減し、より優れた成功率を持つ高忠実な敵の例を生成する。
さらに, 本フレームワークは, 従来の勾配攻撃モデルよりも効率, 効率の両面において優れたトランスファービリティとロバスト性を達成できることを実証した。
関連論文リスト
- Pixel Is Not A Barrier: An Effective Evasion Attack for Pixel-Domain Diffusion Models [9.905296922309157]
拡散モデルは高品質な画像合成のための強力な生成モデルとして登場し、それに基づく画像編集技術も数多くある。
従来の研究は、知覚不能な摂動を加えることで、画像の拡散に基づく編集を防ごうとしてきた。
本研究は,UNETの脆弱性を悪用した特徴表現攻撃損失と,保護された画像の自然性を高めるための潜在最適化戦略を備えた,新たな攻撃フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-21T17:56:34Z) - Iterative Window Mean Filter: Thwarting Diffusion-based Adversarial Purification [26.875621618432504]
顔認証システムは、敵攻撃のような目立たない摂動に敏感なため、信頼性が低い。
我々はIWMF (Iterative Window Mean Filter) と呼ばれる,新しい非深層学習に基づく画像フィルタを開発した。
我々は,IWMFと拡散モデルを統合した,IWMF-Diffという逆浄化のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-20T09:19:43Z) - Multi-granular Adversarial Attacks against Black-box Neural Ranking Models [111.58315434849047]
多粒性摂動を取り入れた高品質な逆数例を作成する。
我々は,多粒体攻撃を逐次的意思決定プロセスに変換する。
本手法は,攻撃の有効性と非受容性の両方において,一般的なベースラインを超えている。
論文 参考訳(メタデータ) (2024-04-02T02:08:29Z) - RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content [62.685566387625975]
現在の緩和戦略は効果はあるものの、敵の攻撃下では弾力性がない。
本稿では,大規模言語モデルのための弾力性ガードレール(RigorLLM)について紹介する。
論文 参考訳(メタデータ) (2024-03-19T07:25:02Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
本稿では,相互モダリティ最適化スキームにおける敵攻撃を生成する新しい手法を提案する。
我々の手法は最先端の攻撃方法より優れており、プラグイン・アンド・プレイ・ソリューションとして容易にデプロイできる。
論文 参考訳(メタデータ) (2023-12-20T05:06:01Z) - Introducing Foundation Models as Surrogate Models: Advancing Towards
More Practical Adversarial Attacks [15.882687207499373]
箱なしの敵攻撃は、AIシステムにとってより実用的で難しいものになりつつある。
本稿では,サロゲートモデルとして基礎モデルを導入することにより,逆攻撃を下流タスクとして再放送する。
論文 参考訳(メタデータ) (2023-07-13T08:10:48Z) - LEAT: Towards Robust Deepfake Disruption in Real-World Scenarios via
Latent Ensemble Attack [11.764601181046496]
生成モデルによって作成された悪意のある視覚コンテンツであるディープフェイクは、社会にますます有害な脅威をもたらす。
近年のディープフェイクの損傷を積極的に軽減するために, 逆方向の摂動を用いてディープフェイクモデルの出力を妨害する研究が進められている。
そこで本研究では,Latent Ensemble ATtack (LEAT) と呼ばれる簡易かつ効果的なディスラプション手法を提案する。
論文 参考訳(メタデータ) (2023-07-04T07:00:37Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - A Perceptual Distortion Reduction Framework for Adversarial Perturbation
Generation [58.6157191438473]
2つの観点からこの問題に対処するための知覚的歪み低減フレームワークを提案する。
知覚的歪みの制約を提案し,それを敵攻撃の客観的機能に追加し,知覚的歪みと攻撃成功率を共同で最適化する。
論文 参考訳(メタデータ) (2021-05-01T15:08:10Z) - Adversarial example generation with AdaBelief Optimizer and Crop
Invariance [8.404340557720436]
敵攻撃は、安全クリティカルなアプリケーションにおいて堅牢なモデルを評価し、選択するための重要な方法である。
本稿では,AdaBelief Iterative Fast Gradient Method (ABI-FGM)とCrop-Invariant attack Method (CIM)を提案する。
我々の手法は、最先端の勾配に基づく攻撃法よりも成功率が高い。
論文 参考訳(メタデータ) (2021-02-07T06:00:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。